Sphingomyelin metabolism controls the shape and function of the Golgi cisternae

  1. Felix Campelo  Is a corresponding author
  2. Josse van Galen
  3. Gabriele Turacchio
  4. Seetharaman Parashuraman
  5. Michael M Kozlov
  6. María García-Parajo
  7. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain
  2. National Research Council of Italy, Italy
  3. Tel Aviv University, Israel

Abstract

The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae.

Article and author information

Author details

  1. Felix Campelo

    ICFO - The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    felix.campelo@icfo.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-9548
  2. Josse van Galen

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Gabriele Turacchio

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  4. Seetharaman Parashuraman

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  5. Michael M Kozlov

    Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    Michael M Kozlov, Reviewing editor, eLife.
  6. María García-Parajo

    ICFO - The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  7. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Economía y Competitividad (Severo Ochoa Programme SEV-2015-240522)

  • Felix Campelo
  • María García-Parajo

H2020 European Research Council (Advanced Grant 268692)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (Severo Ochoa Programme SEV-2012-0208)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (BFU2015-73288-JIN AEI/FED)

  • Felix Campelo
  • María García-Parajo

Fundación Cellex

  • Felix Campelo
  • María García-Parajo

Human Frontier Science Program (GA RGP0027/2012)

  • María García-Parajo

European Commission (FP7-NANO-VISTA GA 288263)

  • María García-Parajo

Institució Catalana de Recerca i Estudis Avançats

  • María García-Parajo
  • Vivek Malhotra

Israel Science Foundation (758/11)

  • Michael M Kozlov

Ministerio de Economía y Competitividad (Plan Nacional FIS2014-56107-R)

  • María García-Parajo

Ministerio de Economía y Competitividad (Plan Nacional BFU2013-44188-P)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (Consolider CSD2009-00016)

  • Vivek Malhotra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Campelo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,800
    views
  • 703
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix Campelo
  2. Josse van Galen
  3. Gabriele Turacchio
  4. Seetharaman Parashuraman
  5. Michael M Kozlov
  6. María García-Parajo
  7. Vivek Malhotra
(2017)
Sphingomyelin metabolism controls the shape and function of the Golgi cisternae
eLife 6:e24603.
https://doi.org/10.7554/eLife.24603

Share this article

https://doi.org/10.7554/eLife.24603

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.