1. Cell Biology
Download icon

Sphingomyelin metabolism controls the shape and function of the Golgi cisternae

  1. Felix Campelo  Is a corresponding author
  2. Josse van Galen
  3. Gabriele Turacchio
  4. Seetharaman Parashuraman
  5. Michael M Kozlov
  6. María García-Parajo
  7. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain
  2. National Research Council of Italy, Italy
  3. Tel Aviv University, Israel
Research Article
  • Cited 17
  • Views 2,317
  • Annotations
Cite this article as: eLife 2017;6:e24603 doi: 10.7554/eLife.24603

Abstract

The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae.

Article and author information

Author details

  1. Felix Campelo

    ICFO - The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    felix.campelo@icfo.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-9548
  2. Josse van Galen

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Gabriele Turacchio

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  4. Seetharaman Parashuraman

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  5. Michael M Kozlov

    Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    Michael M Kozlov, Reviewing editor, eLife.
  6. María García-Parajo

    ICFO - The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  7. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Economía y Competitividad (Severo Ochoa Programme SEV-2015-240522)

  • Felix Campelo
  • María García-Parajo

H2020 European Research Council (Advanced Grant 268692)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (Severo Ochoa Programme SEV-2012-0208)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (BFU2015-73288-JIN AEI/FED)

  • Felix Campelo
  • María García-Parajo

Fundación Cellex

  • Felix Campelo
  • María García-Parajo

Human Frontier Science Program (GA RGP0027/2012)

  • María García-Parajo

European Commission (FP7-NANO-VISTA GA 288263)

  • María García-Parajo

Institució Catalana de Recerca i Estudis Avançats

  • María García-Parajo
  • Vivek Malhotra

Israel Science Foundation (758/11)

  • Michael M Kozlov

Ministerio de Economía y Competitividad (Plan Nacional FIS2014-56107-R)

  • María García-Parajo

Ministerio de Economía y Competitividad (Plan Nacional BFU2013-44188-P)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (Consolider CSD2009-00016)

  • Vivek Malhotra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia Bassereau, Institut Curie, France

Publication history

  1. Received: December 23, 2016
  2. Accepted: May 4, 2017
  3. Accepted Manuscript published: May 13, 2017 (version 1)
  4. Version of Record published: June 7, 2017 (version 2)

Copyright

© 2017, Campelo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,317
    Page views
  • 618
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.

    1. Cell Biology
    Adria Razzauti, Patrick FM Laurent
    Research Article

    Cilia are sensory organelles protruding from cell surfaces. Release of Extracellular Vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male C. elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or Periciliary Membrane Compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs budding from the PCMC are concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of Intra-Flagellar Transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.