Sphingomyelin metabolism controls the shape and function of the Golgi cisternae

  1. Felix Campelo  Is a corresponding author
  2. Josse van Galen
  3. Gabriele Turacchio
  4. Seetharaman Parashuraman
  5. Michael M Kozlov
  6. María García-Parajo
  7. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain
  2. National Research Council of Italy, Italy
  3. Tel Aviv University, Israel

Abstract

The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae.

Article and author information

Author details

  1. Felix Campelo

    ICFO - The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    felix.campelo@icfo.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0786-9548
  2. Josse van Galen

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Gabriele Turacchio

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  4. Seetharaman Parashuraman

    Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
    Competing interests
    No competing interests declared.
  5. Michael M Kozlov

    Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    Michael M Kozlov, Reviewing editor, eLife.
  6. María García-Parajo

    ICFO - The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  7. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6198-7943

Funding

Ministerio de Economía y Competitividad (Severo Ochoa Programme SEV-2015-240522)

  • Felix Campelo
  • María García-Parajo

H2020 European Research Council (Advanced Grant 268692)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (Severo Ochoa Programme SEV-2012-0208)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (BFU2015-73288-JIN AEI/FED)

  • Felix Campelo
  • María García-Parajo

Fundación Cellex

  • Felix Campelo
  • María García-Parajo

Human Frontier Science Program (GA RGP0027/2012)

  • María García-Parajo

European Commission (FP7-NANO-VISTA GA 288263)

  • María García-Parajo

Institució Catalana de Recerca i Estudis Avançats

  • María García-Parajo
  • Vivek Malhotra

Israel Science Foundation (758/11)

  • Michael M Kozlov

Ministerio de Economía y Competitividad (Plan Nacional FIS2014-56107-R)

  • María García-Parajo

Ministerio de Economía y Competitividad (Plan Nacional BFU2013-44188-P)

  • Vivek Malhotra

Ministerio de Economía y Competitividad (Consolider CSD2009-00016)

  • Vivek Malhotra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Campelo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,784
    views
  • 700
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix Campelo
  2. Josse van Galen
  3. Gabriele Turacchio
  4. Seetharaman Parashuraman
  5. Michael M Kozlov
  6. María García-Parajo
  7. Vivek Malhotra
(2017)
Sphingomyelin metabolism controls the shape and function of the Golgi cisternae
eLife 6:e24603.
https://doi.org/10.7554/eLife.24603

Share this article

https://doi.org/10.7554/eLife.24603

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.