Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells

  1. A Catalina Vélez-Ortega
  2. Mary J Freeman
  3. Artur A Indzhykulian
  4. Jonathan M Grossheim
  5. Gregory I Frolenkov  Is a corresponding author
  1. College of Medicine, University of Kentucky, United States
  2. Harvard Medical School, United States

Abstract

Mechanotransducer channels at the tips of sensory stereocilia of inner ear hair cells are gated by the tension of 'tip links' interconnecting stereocilia. To ensure maximal sensitivity, tip links are tensioned at rest, resulting in a continuous influx of Ca2+ into the cell. Here we show that this constitutive Ca2+ influx, usually considered as potentially deleterious for hair cells, is in fact essential for stereocilia stability. In the auditory hair cells of young postnatal mice and rats, a reduction in mechanotransducer current, via pharmacological channel blockers or disruption of tip links, leads to stereocilia shape changes and shortening. These effects occur only in stereocilia that harbor mechanotransducer channels, recover upon blocker washout or tip link regeneration, and can be replicated by manipulations of extracellular Ca2+ or intracellular Ca2+ buffering. Thus, our data provide the first experimental evidence for the dynamic control of stereocilia morphology by the mechanotransduction current.

Article and author information

Author details

  1. A Catalina Vélez-Ortega

    Department of Physiology, College of Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9157-8390
  2. Mary J Freeman

    Department of Physiology, College of Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Artur A Indzhykulian

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan M Grossheim

    Department of Physiology, College of Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gregory I Frolenkov

    Department of Physiology, College of Medicine, University of Kentucky, Lexington, United States
    For correspondence
    Gregory.Frolenkov@uky.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9810-5024

Funding

National Institute on Deafness and Other Communication Disorders (DC014658)

  • Gregory I Frolenkov

National Institute on Deafness and Other Communication Disorders (DC008861)

  • Gregory I Frolenkov

American Hearing Research Foundation

  • A Catalina Vélez-Ortega

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Kentucky (protocol 00903M2005).

Copyright

© 2017, Vélez-Ortega et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,605
    views
  • 751
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. A Catalina Vélez-Ortega
  2. Mary J Freeman
  3. Artur A Indzhykulian
  4. Jonathan M Grossheim
  5. Gregory I Frolenkov
(2017)
Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells
eLife 6:e24661.
https://doi.org/10.7554/eLife.24661

Share this article

https://doi.org/10.7554/eLife.24661

Further reading

    1. Cell Biology
    Wonjo Jang, Kanishka Senarath ... Nevin A Lambert
    Tools and Resources

    Classical G-protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap, we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20–30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial-trans Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.