Presynaptic morphology and vesicular composition determine vesicle dynamics in mouse central synapses

  1. Laurent Guillaud  Is a corresponding author
  2. Dimitar Dimitrov
  3. Tomoyuki Takahashi  Is a corresponding author
  1. Okinawa Institute of Science and Technology - Graduate University, Japan

Abstract

Transport of synaptic vesicles (SVs) in nerve terminals is thought to play essential roles in maintenance of neurotransmission. To identify factors modulating SV movements, we performed real-time imaging analysis of fluorescently labeled SVs in giant calyceal and conventional hippocampal terminals. Compared with small hippocampal terminals, SV movements in giant calyceal terminals were faster, longer and kinetically more heterogeneous. Morphological maturation of giant calyceal terminals was associated with an overall reduction in SV mobility and displacement heterogeneity. At the molecular level, SVs over-expressing vesicular glutamate transporter 1 (VGLUT1) showed higher mobility than VGLUT2-expressing SVs. Pharmacological disruption of the presynaptic microtubule network preferentially reduced long directional movements of SVs between release sites. Functionally, synaptic stimulation appeared to recruit SVs to active zones without significantly altering their mobility. Hence, the morphological features of nerve terminals and the molecular signature of vesicles are key elements determining vesicular dynamics and movements in central synapses.

Article and author information

Author details

  1. Laurent Guillaud

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Onna, Japan
    For correspondence
    laurent.guillaud@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0991
  2. Dimitar Dimitrov

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomoyuki Takahashi

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Onna, Japan
    For correspondence
    ttakahas@oist.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Okinawa Institute of Science and Technology Graduate University

  • Tomoyuki Takahashi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments have been performed in accordance to the regulations of OIST animal care and use committee (protocol #2015-128). OIST animal facilities and animal care and use program are accredited by AAALAC International (reference #1551).

Copyright

© 2017, Guillaud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,755
    views
  • 769
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurent Guillaud
  2. Dimitar Dimitrov
  3. Tomoyuki Takahashi
(2017)
Presynaptic morphology and vesicular composition determine vesicle dynamics in mouse central synapses
eLife 6:e24845.
https://doi.org/10.7554/eLife.24845

Share this article

https://doi.org/10.7554/eLife.24845