Presynaptic morphology and vesicular composition determine vesicle dynamics in mouse central synapses

  1. Laurent Guillaud  Is a corresponding author
  2. Dimitar Dimitrov
  3. Tomoyuki Takahashi  Is a corresponding author
  1. Okinawa Institute of Science and Technology - Graduate University, Japan

Abstract

Transport of synaptic vesicles (SVs) in nerve terminals is thought to play essential roles in maintenance of neurotransmission. To identify factors modulating SV movements, we performed real-time imaging analysis of fluorescently labeled SVs in giant calyceal and conventional hippocampal terminals. Compared with small hippocampal terminals, SV movements in giant calyceal terminals were faster, longer and kinetically more heterogeneous. Morphological maturation of giant calyceal terminals was associated with an overall reduction in SV mobility and displacement heterogeneity. At the molecular level, SVs over-expressing vesicular glutamate transporter 1 (VGLUT1) showed higher mobility than VGLUT2-expressing SVs. Pharmacological disruption of the presynaptic microtubule network preferentially reduced long directional movements of SVs between release sites. Functionally, synaptic stimulation appeared to recruit SVs to active zones without significantly altering their mobility. Hence, the morphological features of nerve terminals and the molecular signature of vesicles are key elements determining vesicular dynamics and movements in central synapses.

Article and author information

Author details

  1. Laurent Guillaud

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Onna, Japan
    For correspondence
    laurent.guillaud@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9688-0991
  2. Dimitar Dimitrov

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomoyuki Takahashi

    Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Onna, Japan
    For correspondence
    ttakahas@oist.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Okinawa Institute of Science and Technology Graduate University

  • Tomoyuki Takahashi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian Rosenmund, Charité-Universitätsmedizin Berlin, Germany

Ethics

Animal experimentation: All experiments have been performed in accordance to the regulations of OIST animal care and use committee (protocol #2015-128). OIST animal facilities and animal care and use program are accredited by AAALAC International (reference #1551).

Version history

  1. Received: January 2, 2017
  2. Accepted: April 18, 2017
  3. Accepted Manuscript published: April 22, 2017 (version 1)
  4. Version of Record published: May 9, 2017 (version 2)
  5. Version of Record updated: May 12, 2017 (version 3)

Copyright

© 2017, Guillaud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,667
    views
  • 761
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurent Guillaud
  2. Dimitar Dimitrov
  3. Tomoyuki Takahashi
(2017)
Presynaptic morphology and vesicular composition determine vesicle dynamics in mouse central synapses
eLife 6:e24845.
https://doi.org/10.7554/eLife.24845

Share this article

https://doi.org/10.7554/eLife.24845

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Qin Ni, Sean X Sun
    Insight

    An influx of water molecules can help immune cells called neutrophils to move to where they are needed in the body.

    1. Cell Biology
    2. Physics of Living Systems
    Tamas L Nagy, Evelyn Strickland, Orion D Weiner
    Research Article

    While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.