Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep

  1. Henrik Bringmann  Is a corresponding author
  2. Juliane Schwarz
  1. Max Planck Institute for Biophysical Chemistry, Germany

Abstract

Sleep is a behavior that is found in all animals that have a nervous system and that have been studied carefully. In Caenorhabditis elegans larvae, sleep is associated with a turning behavior, called flipping, in which animals rotate 180{degree sign} about their longitudinal axis. However, the molecular and neural substrates of this enigmatic behavior are not known. Here, we identified the conserved NK-2 homeobox gene ceh-24 to be crucially required for flipping. ceh-24 is required for the formation of processes and for cholinergic function of sublateral motor neurons, which separately innervate the four body muscle quadrants. Knockdown of cholinergic function in a subset of these sublateral neurons, the SIAs, abolishes flipping. The SIAs depolarize during flipping and their optogenetic activation induces flipping in a fraction of events. Thus, we identified the sublateral SIA neurons to control the three-dimensional movements of flipping. These neurons may also control other types of motion.

Article and author information

Author details

  1. Henrik Bringmann

    Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    henrik.bringmann@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7689-8617
  2. Juliane Schwarz

    Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max-Planck-Gesellschaft (Max Planck Research Group (Open-access funding))

  • Henrik Bringmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Publication history

  1. Received: January 2, 2017
  2. Accepted: February 26, 2017
  3. Accepted Manuscript published: February 28, 2017 (version 1)
  4. Accepted Manuscript updated: March 2, 2017 (version 2)
  5. Version of Record published: April 7, 2017 (version 3)

Copyright

© 2017, Bringmann & Schwarz

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,094
    Page views
  • 219
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Henrik Bringmann
  2. Juliane Schwarz
(2017)
Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep
eLife 6:e24846.
https://doi.org/10.7554/eLife.24846
  1. Further reading

Further reading

    1. Neuroscience
    Saloni Krishnan, Gabriel J Cler ... Kate E Watkins
    Research Article

    Developmental language disorder (DLD) is a common neurodevelopmental disorder characterised by receptive or expressive language difficulties or both. While theoretical frameworks and empirical studies support the idea that there may be neural correlates of DLD in frontostriatal loops, findings are inconsistent across studies. Here, we use a novel semiquantitative imaging protocol – multi-parameter mapping (MPM) – to investigate microstructural neural differences in children with DLD. The MPM protocol allows us to reproducibly map specific indices of tissue microstructure. In 56 typically developing children and 33 children with DLD, we derived maps of (1) longitudinal relaxation rate R1 (1/T1), (2) transverse relaxation rate R2* (1/T2*), and (3) Magnetization Transfer saturation (MTsat). R1 and MTsat predominantly index myelin, while R2* is sensitive to iron content. Children with DLD showed reductions in MTsat values in the caudate nucleus bilaterally, as well as in the left ventral sensorimotor cortex and Heschl’s gyrus. They also had globally lower R1 values. No group differences were noted in R2* maps. Differences in MTsat and R1 were coincident in the caudate nucleus bilaterally. These findings support our hypothesis of corticostriatal abnormalities in DLD and indicate abnormal levels of myelin in the dorsal striatum in children with DLD.

    1. Neuroscience
    Marie Chancel, H Henrik Ehrsson, Wei Ji Ma
    Research Article

    Many studies have investigated the contributions of vision, touch, and proprioception to body ownership, i.e., the multisensory perception of limbs and body parts as our own. However, the computational processes and principles that determine subjectively experienced body ownership remain unclear. To address this issue, we developed a detection-like psychophysics task based on the classic rubber hand illusion paradigm where participants were asked to report whether the rubber hand felt like their own (the illusion) or not. We manipulated the asynchrony of visual and tactile stimuli delivered to the rubber hand and the hidden real hand under different levels of visual noise. We found that (1) the probability of the emergence of the rubber hand illusion increased with visual noise and was well predicted by a causal inference model involving the observer computing the probability of the visual and tactile signals coming from a common source; (2) the causal inference model outperformed a non-Bayesian model involving the observer not taking into account sensory uncertainty; (3) by comparing body ownership and visuotactile synchrony detection, we found that the prior probability of inferring a common cause for the two types of multisensory percept was correlated but greater for ownership, which suggests that individual differences in rubber hand illusion can be explained at the computational level as differences in how priors are used in the multisensory integration process. These results imply that the same statistical principles determine the perception of the bodily self and the external world.