An allosteric transport mechanism for the AcrAB-TolC Multidrug Efflux Pump

  1. Zhao Wang
  2. Guizhen Fan
  3. Corey F Hryc
  4. James N Blaza
  5. Irina I Serysheva
  6. Michael F Schmid
  7. Wah Chiu  Is a corresponding author
  8. Ben F Luisi  Is a corresponding author
  9. Dijun Du  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. The University of Texas Health Science Center at Houston Medical School, United States
  3. MRC Mitochondrial Biology Unit, United Kingdom
  4. University of Cambridge, United Kingdom

Abstract

Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump.

Data availability

The following data sets were generated
    1. D. Du
    2. B.F. Luisi
    (2017) Crystal structure of AcrBZ complex: 2017
    Publicly available at PDB (accession no: 5NC5).

Article and author information

Author details

  1. Zhao Wang

    National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guizhen Fan

    Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Corey F Hryc

    National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James N Blaza

    MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5420-2116
  5. Irina I Serysheva

    Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael F Schmid

    National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wah Chiu

    National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States
    For correspondence
    wah@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Ben F Luisi

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    bfl20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1144-9877
  9. Dijun Du

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    dd339@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome

  • Ben F Luisi

Human Frontier Science Program

  • Ben F Luisi

National Institutes of Health (P41GM103832)

  • Wah Chiu

American Heart Association (16GRNT29720001)

  • Irina I Serysheva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olga Boudker, Weill Cornell Medical College, United States

Publication history

  1. Received: January 5, 2017
  2. Accepted: March 14, 2017
  3. Accepted Manuscript published: March 29, 2017 (version 1)
  4. Version of Record published: April 25, 2017 (version 2)

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,228
    Page views
  • 1,555
    Downloads
  • 135
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhao Wang
  2. Guizhen Fan
  3. Corey F Hryc
  4. James N Blaza
  5. Irina I Serysheva
  6. Michael F Schmid
  7. Wah Chiu
  8. Ben F Luisi
  9. Dijun Du
(2017)
An allosteric transport mechanism for the AcrAB-TolC Multidrug Efflux Pump
eLife 6:e24905.
https://doi.org/10.7554/eLife.24905

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Tsuyoshi Imasaki et al.
    Research Article

    Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Toshiyuki Oda et al.
    Research Article

    Langerhans cells are specialized antigen-presenting cells localized within the epidermis and mucosal epithelium. Upon contact with Langerhans cells, pathogens are captured by the C-type lectin langerin and internalized into a structurally unique vesicle known as a Birbeck granule. Although the immunological role of Langerhans cells and Birbeck granules have been extensively studied, the mechanism by which the characteristic zippered membrane structure of Birbeck granules is formed remains elusive. In this study, we observed isolated Birbeck granules using cryo-electron tomography and reconstructed the 3D structure of the repeating unit of the honeycomb lattice of langerin at 6.4 Å resolution. We found that the interaction between the two langerin trimers was mediated by docking the flexible loop at residues 258-263 into the secondary carbohydrate-binding cleft. Mutations within the loop inhibited Birbeck granule formation and the internalization of HIV pseudovirus. These findings suggest a molecular mechanism for membrane zippering during Birbeck granule biogenesis and provide insight into the role of langerin in the defense against viral infection.