The genomic landscape of human cellular circadian variation points to a novel role for the signalosome

  1. Ludmila Gaspar
  2. Cedric Howald
  3. Konstantin Popadin
  4. Bert Maier
  5. Daniel Mauvoisin
  6. Ermanno Moriggi
  7. Maria Gutierrez-Arcelus
  8. Emilie Falconnet
  9. Christelle Borel
  10. Dieter Kunz
  11. Achim Kramer
  12. Frederic Gachon
  13. Emmanouil T Dermitzakis
  14. Stylianos E Antonarakis
  15. Steven A Brown  Is a corresponding author
  1. Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
  2. University of Geneva, Switzerland
  3. Charité-Universitätsmedizin Berlin, Germany
  4. University of Lausanne, Switzerland
  5. Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
  6. Charité Universitätsmedizin Berlin, Germany
  7. Institute of Pharmacology and Toxicology, University of Zürich, Switzerland

Abstract

The importance of natural gene expression variation for human behavior is undisputed, but its impact on circadian physiology remains mostly unexplored. Using umbilical cord fibroblasts, we have determined by genome-wide association how common genetic variation impacts upon cellular circadian function. Gene set enrichment points to differences in protein catabolism as one major source of clock variation in humans. The two most significant alleles regulated expression of COPS7B, a subunit of the COP9 signalosome. We further show that the signalosome complex is imported into the nucleus in timed fashion to stabilize the essential circadian protein BMAL1, a novel mechanism to oppose its proteasome-mediated degradation. Thus, circadian clock properties depend in part upon a genetically-encoded competition between stabilizing and destabilizing forces, and genetic alterations in these mechanisms provide one explanation for human chronotype.

Data availability

The following previously published data sets were used
    1. Dermitzakis
    2. E
    (2011) Gencord
    Publicly available at the NCBI Sequence Read Archive (accession no. EGAD00000000027).

Article and author information

Author details

  1. Ludmila Gaspar

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Cedric Howald

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Konstantin Popadin

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2117-6086
  4. Bert Maier

    Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Mauvoisin

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0571-0741
  6. Ermanno Moriggi

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4600-5777
  7. Maria Gutierrez-Arcelus

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Emilie Falconnet

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Christelle Borel

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Dieter Kunz

    Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Achim Kramer

    Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Frederic Gachon

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9279-9707
  13. Emmanouil T Dermitzakis

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Stylianos E Antonarakis

    Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  15. Steven A Brown

    Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
    For correspondence
    Steven.brown@pharma.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5511-568X

Funding

Swiss National Science Foundation (CRSII3_160741)

  • Steven A Brown

Zurich Hospital (CRPPSleep&Health)

  • Steven A Brown

Velux Foundation (923)

  • Steven A Brown

European Research Council (ERC-2010-StG-260988)

  • Frederic Gachon

Leenards Foundation (Grant)

  • Frederic Gachon

Immanuel Kant Baltic University (5 Top 100 Russian Academic Excellence Project)

  • Konstantin Popadin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patrick Nolan, Medical Research Council Harwell, United Kingdom

Ethics

Animal experimentation: All animal experiments were conducted with the approval of relevant cantonal veterinary authorities in Switzerland, after prior review of all procedures and planned experiments.

Human subjects: All human samples used in these studies were obtained after approval of all protocols and procedures by the relevant responsible authorities (of the University Hospital Geneva, CH; and Charite Universitätsmedezin, Berlin, DE), and prior written informed consent was obtained from all subjects or their legal guardians.

Version history

  1. Received: February 15, 2017
  2. Accepted: September 1, 2017
  3. Accepted Manuscript published: September 4, 2017 (version 1)
  4. Version of Record published: September 15, 2017 (version 2)

Copyright

© 2017, Gaspar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,375
    Page views
  • 317
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ludmila Gaspar
  2. Cedric Howald
  3. Konstantin Popadin
  4. Bert Maier
  5. Daniel Mauvoisin
  6. Ermanno Moriggi
  7. Maria Gutierrez-Arcelus
  8. Emilie Falconnet
  9. Christelle Borel
  10. Dieter Kunz
  11. Achim Kramer
  12. Frederic Gachon
  13. Emmanouil T Dermitzakis
  14. Stylianos E Antonarakis
  15. Steven A Brown
(2017)
The genomic landscape of human cellular circadian variation points to a novel role for the signalosome
eLife 6:e24994.
https://doi.org/10.7554/eLife.24994

Share this article

https://doi.org/10.7554/eLife.24994

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.