Reciprocal regulation of ARPP-16 by PKA and MAST-3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition

  1. Veronica Musante
  2. Lu Li
  3. Jean Kanyo
  4. Tukiet T Lam
  5. Christopher M Colangelo
  6. Shuk Kei Cheng
  7. Harrison Brody
  8. Paul Greengard
  9. Nicolas Le Novère
  10. Angus C Nairn  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Babraham Institute, United Kingdom
  3. Yale University School Medicine, United States
  4. The Rockefeller University, United States

Abstract

ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition.

Article and author information

Author details

  1. Veronica Musante

    Department of Psychiatry, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lu Li

    Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean Kanyo

    W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tukiet T Lam

    W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher M Colangelo

    W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuk Kei Cheng

    Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Harrison Brody

    Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul Greengard

    Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicolas Le Novère

    Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6309-7327
  10. Angus C Nairn

    Department of Psychiatry, Yale University School of Medicine, New Haven, United States
    For correspondence
    angus.nairn@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7075-0195

Funding

National Institute on Drug Abuse (DA018343)

  • Angus C Nairn

National Institutes of Health (DA10044 NS091336)

  • Veronica Musante
  • Paul Greengard
  • Angus C Nairn

State of Connecticut Department of Mental Health and Addiction Services

  • Angus C Nairn

Brain and Behavior Research Foundation

  • Veronica Musante

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roger J Davis, University of Massachusetts Medical School, United States

Version history

  1. Received: January 10, 2017
  2. Accepted: June 13, 2017
  3. Accepted Manuscript published: June 14, 2017 (version 1)
  4. Version of Record published: July 18, 2017 (version 2)

Copyright

© 2017, Musante et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,728
    views
  • 317
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Veronica Musante
  2. Lu Li
  3. Jean Kanyo
  4. Tukiet T Lam
  5. Christopher M Colangelo
  6. Shuk Kei Cheng
  7. Harrison Brody
  8. Paul Greengard
  9. Nicolas Le Novère
  10. Angus C Nairn
(2017)
Reciprocal regulation of ARPP-16 by PKA and MAST-3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition
eLife 6:e24998.
https://doi.org/10.7554/eLife.24998

Share this article

https://doi.org/10.7554/eLife.24998

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.