Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa

  1. Oliver John Watson  Is a corresponding author
  2. Hannah C Slater
  3. Robert Verity
  4. Jonathan B Parr
  5. Melchior K Mwandagalirwa
  6. Antoinette Tshefu
  7. Steven R Meshnick
  8. Azra C Ghani
  1. Imperial College London, United Kingdom
  2. University of North Carolina, United States
  3. University of Kinshasa, Democratic Republic of the Congo

Abstract

Rapid diagnostic tests (RDTs) have transformed malaria diagnosis. The most prevalent P. falciparum RDTs detect histidine-rich protein 2 (PfHRP2). However, pfhrp2 gene deletions yielding false-negative RDTs, first reported in South America in 2010, have been confirmed in Africa and Asia. We developed a mathematical model to explore the potential for RDT-led diagnosis to drive selection of pfhrp2-deleted parasites. Low malaria prevalence and high frequencies of people seeking treatment resulted in the greatest selection pressure. Calibrating our model against confirmed pfhrp2-deletions in the Democratic Republic of Congo, we estimate a starting frequency of 6% pfhrp2-deletion prior to RDT introduction. Furthermore, the patterns observed necessitate a degree of selection driven by the introduction of PfHRP2-based RDT-guided treatment. Combining this with parasite prevalence and treatment coverage estimates, we map the model-predicted spread of pfhrp2-deletion, and identify the geographic regions in which surveillance for pfhrp2-deletion should be prioritised.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Oliver John Watson

    Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    For correspondence
    o.watson15@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2374-0741
  2. Hannah C Slater

    Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Verity

    Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan B Parr

    Division of Infectious Diseases, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melchior K Mwandagalirwa

    School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
    Competing interests
    The authors declare that no competing interests exist.
  6. Antoinette Tshefu

    School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
    Competing interests
    The authors declare that no competing interests exist.
  7. Steven R Meshnick

    Division of Infectious Diseases, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Azra C Ghani

    MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (109312/Z/15/Z)

  • Oliver John Watson

National Institute of Allergy and Infectious Diseases (5R01AI107949)

  • Steven R Meshnick

Imperial College London

  • Hannah C Slater

Medical Research Council (MR/N01507X/1)

  • Robert Verity

Department for International Development

  • Azra C Ghani

National Institute of Allergy and Infectious Diseases (5T32AI007151)

  • Jonathan B Parr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben Cooper, Mahidol Oxford Tropical Medicine Research Unit, Thailand

Version history

  1. Received: January 9, 2017
  2. Accepted: August 21, 2017
  3. Accepted Manuscript published: August 24, 2017 (version 1)
  4. Accepted Manuscript updated: August 29, 2017 (version 2)
  5. Version of Record published: September 18, 2017 (version 3)
  6. Version of Record updated: September 29, 2017 (version 4)

Copyright

© 2017, Watson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,459
    views
  • 449
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oliver John Watson
  2. Hannah C Slater
  3. Robert Verity
  4. Jonathan B Parr
  5. Melchior K Mwandagalirwa
  6. Antoinette Tshefu
  7. Steven R Meshnick
  8. Azra C Ghani
(2017)
Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa
eLife 6:e25008.
https://doi.org/10.7554/eLife.25008

Share this article

https://doi.org/10.7554/eLife.25008

Further reading

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.