Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions

  1. Babak Momeni  Is a corresponding author
  2. Li Xie
  3. Wenying Shou  Is a corresponding author
  1. Boston College, United States
  2. Fred Hutchinson Cancer Research Center, United States

Abstract

Pairwise models are commonly used to describe many-species communities. In these models, an individual receives additive fitness effects from pairwise interactions with each species in the community ('additivity assumption'). All pairwise interactions are typically represented by a single equation where parameters reflect signs and strengths of fitness effects ('universality assumption'). Here, we show that a single equation fails to qualitatively capture diverse pairwise microbial interactions. We build mechanistic reference models for two microbial species engaging in commonly-found chemical-mediated interactions, and attempt to derive pairwise models. Different equations are appropriate depending on whether a mediator is consumable or reusable, whether an interaction is mediated by one or more mediators, and sometimes even on quantitative details of the community (e.g. relative fitness of the two species, initial conditions). Our results, combined with potential violation of the additivity assumption in many-species communities, suggest that pairwise modeling will often fail to predict microbial dynamics.

Article and author information

Author details

  1. Babak Momeni

    Department of Biology, Boston College, Chestnut Hill, United States
    For correspondence
    momeni@bc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1271-5196
  2. Li Xie

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  3. Wenying Shou

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    wshou@fredhutch.org
    Competing interests
    Wenying Shou, Reviewing editor, eLife.

Funding

Boston College

  • Babak Momeni

NIH Office of the Director

  • Babak Momeni
  • Li Xie

W. M. Keck Foundation

  • Babak Momeni

Fred Hutchinson Cancer Research Center

  • Li Xie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruce Levin

Version history

  1. Received: January 11, 2017
  2. Accepted: March 18, 2017
  3. Accepted Manuscript published: March 28, 2017 (version 1)
  4. Accepted Manuscript updated: April 3, 2017 (version 2)
  5. Version of Record published: June 13, 2017 (version 3)

Copyright

© 2017, Momeni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,385
    Page views
  • 1,352
    Downloads
  • 127
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Babak Momeni
  2. Li Xie
  3. Wenying Shou
(2017)
Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions
eLife 6:e25051.
https://doi.org/10.7554/eLife.25051

Further reading

    1. Computational and Systems Biology
    Arya Mani
    Insight

    A deep analysis of multiple genomic datasets reveals which genetic pathways associated with atherosclerosis and coronary artery disease are shared between mice and humans.

    1. Computational and Systems Biology
    Zeyneb Kurt, Jenny Cheng ... Xia Yang
    Research Article

    Mouse models have been used extensively to study human coronary artery disease (CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and human share similar genetic factors and pathogenic mechanisms of atherosclerosis has not been thoroughly investigated in a data-driven manner. We conducted a cross-species comparison study to better understand atherosclerosis pathogenesis between species by leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-causal gene networks and pathways, by using human GWAS of CAD from the CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human (STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human shared >75% of CAD causal pathways. Based on network topology, we then predicted key regulatory genes for both the shared pathways and species-specific pathways, which were further validated through the use of single cell data and the latest CAD GWAS. In sum, our results should serve as a much-needed guidance for which human CAD-causal pathways can or cannot be further evaluated for novel CAD therapies using mouse models.