Saccadic suppression as a perceptual consequence of efficient sensorimotor estimation
Abstract
Humans perform saccadic eye movements two to three times per second. When doing so, the nervous system strongly suppresses sensory feedback for extended periods of time in comparison to movement time. Why does the brain discard so much visual information? Here we suggest that perceptual suppression may arise from efficient sensorimotor computations, assuming that perception and control are fundamentally linked. More precisely, we show theoretically that a Bayesian estimator should reduce the weight of sensory information around the time of saccades, as a result of signal dependent noise and of sensorimotor delays. Such reduction parallels the behavioral suppression occurring prior to and during saccades, and the reduction in neural responses to visual stimuli observed across the visual hierarchy. We suggest that saccadic suppression originates from efficient sensorimotor processing, indicating that the brain shares neural resources for perception and control.
Article and author information
Author details
Funding
Fonds De La Recherche Scientifique - FNRS (1.B.087.15F)
- Frederic Crevecoeur
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Crevecoeur & Kording
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,331
- views
-
- 357
- downloads
-
- 36
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 36
- citations for umbrella DOI https://doi.org/10.7554/eLife.25073