Physical limits of flow sensing in the left-right organizer

  1. Rita R Ferreira
  2. Andrej Vilfan  Is a corresponding author
  3. Frank Jülicher
  4. Willy Supatto  Is a corresponding author
  5. Julien Vermot  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. J. Stefan Institute, Slovenia
  3. Max-Planck-Institute for the Physics of Complex Systems, Germany
  4. Ecole Polytechnique, Centre National de la Recherche Scientifique (UMR7645), France

Abstract

Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection in order to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment.

Article and author information

Author details

  1. Rita R Ferreira

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    No competing interests declared.
  2. Andrej Vilfan

    J. Stefan Institute, Ljubljana, Slovenia
    For correspondence
    andrej.vilfan@ijs.si
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8985-6072
  3. Frank Jülicher

    Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  4. Willy Supatto

    Laboratory for Optics and Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique (UMR7645), Palaiseau, France
    For correspondence
    willy.supatto@polytechnique.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4562-9166
  5. Julien Vermot

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    julien@igbmc.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8924-732X

Funding

Human Frontier Science Program (CDA00032/2010-C)

  • Julien Vermot

Labex (ANR-10-LABX-0030-INRT)

  • Rita R Ferreira
  • Julien Vermot

Agence Nationale de la Recherche (ANR-13-BSV1-0016)

  • Julien Vermot

Agence Nationale de la Recherche (ANR- 12-ISV2-0001)

  • Julien Vermot

Agence Nationale de la Recherche (ANR-2010-JCJC-1510-01​)

  • Willy Supatto

Agence Nationale de la Recherche (ANR-11-EQPX-0029​)

  • Willy Supatto

Javna Agencija za Raziskovalno Dejavnost RS (grant J1-5437)

  • Andrej Vilfan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the Animal Experimentation Committee of the Institutional Review Board of the IGBMC.

Copyright

© 2017, Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,376
    views
  • 655
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rita R Ferreira
  2. Andrej Vilfan
  3. Frank Jülicher
  4. Willy Supatto
  5. Julien Vermot
(2017)
Physical limits of flow sensing in the left-right organizer
eLife 6:e25078.
https://doi.org/10.7554/eLife.25078

Share this article

https://doi.org/10.7554/eLife.25078

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.