Physical limits of flow sensing in the left-right organizer

  1. Rita R Ferreira
  2. Andrej Vilfan  Is a corresponding author
  3. Frank Jülicher
  4. Willy Supatto  Is a corresponding author
  5. Julien Vermot  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. J. Stefan Institute, Slovenia
  3. Max-Planck-Institute for the Physics of Complex Systems, Germany
  4. Ecole Polytechnique, Centre National de la Recherche Scientifique (UMR7645), France

Abstract

Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection in order to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment.

Article and author information

Author details

  1. Rita R Ferreira

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    No competing interests declared.
  2. Andrej Vilfan

    J. Stefan Institute, Ljubljana, Slovenia
    For correspondence
    andrej.vilfan@ijs.si
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8985-6072
  3. Frank Jülicher

    Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  4. Willy Supatto

    Laboratory for Optics and Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique (UMR7645), Palaiseau, France
    For correspondence
    willy.supatto@polytechnique.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4562-9166
  5. Julien Vermot

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    julien@igbmc.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8924-732X

Funding

Human Frontier Science Program (CDA00032/2010-C)

  • Julien Vermot

Labex (ANR-10-LABX-0030-INRT)

  • Rita R Ferreira
  • Julien Vermot

Agence Nationale de la Recherche (ANR-13-BSV1-0016)

  • Julien Vermot

Agence Nationale de la Recherche (ANR- 12-ISV2-0001)

  • Julien Vermot

Agence Nationale de la Recherche (ANR-2010-JCJC-1510-01​)

  • Willy Supatto

Agence Nationale de la Recherche (ANR-11-EQPX-0029​)

  • Willy Supatto

Javna Agencija za Raziskovalno Dejavnost RS (grant J1-5437)

  • Andrej Vilfan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M Berry, University of Oxford, United Kingdom

Ethics

Animal experimentation: Animal experiments were approved by the Animal Experimentation Committee of the Institutional Review Board of the IGBMC.

Version history

  1. Received: January 19, 2017
  2. Accepted: June 13, 2017
  3. Accepted Manuscript published: June 14, 2017 (version 1)
  4. Version of Record published: August 4, 2017 (version 2)

Copyright

© 2017, Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,334
    views
  • 649
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rita R Ferreira
  2. Andrej Vilfan
  3. Frank Jülicher
  4. Willy Supatto
  5. Julien Vermot
(2017)
Physical limits of flow sensing in the left-right organizer
eLife 6:e25078.
https://doi.org/10.7554/eLife.25078

Share this article

https://doi.org/10.7554/eLife.25078

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.