Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells

  1. David Moreno Delgado
  2. Thor C Møller
  3. Jeanne Ster
  4. Jesús Giraldo
  5. Damien Maurel
  6. Xavier Rovira
  7. Pauline Scholler
  8. Jurrian M Zwier
  9. Julie Perroy
  10. Thierry Durroux
  11. Eric Trinquet
  12. Laurent Prezeau
  13. Philippe Rondard
  14. Jean-Philippe Pin  Is a corresponding author
  1. CNRS, INSERM, Univ Montpellier, France
  2. CNRS, INSERM, Université de Montpellier, France
  3. Universitat Autònoma de Barcelona, Spain
  4. Cisbio bioassays, France

Abstract

Metabotropic glutamate receptors (mGluRs) are mandatory dimers playing important roles in regulating CNS function. Although assumed to form exclusive homodimers, sixteen possible heterodimeric mGluRs have been proposed but their existence in native cells remains elusive. Here we set up two assays to specifically identify the pharmacological properties of rat mGlu heterodimers composed of mGlu2 and 4 subunits. We used either a heterodimer specific conformational LRET-based biosensor, or a system that guarantees the cell surface targeting of the heterodimer only. We identified mGlu2-4 specific pharmacological fingerprints that were also observed in a neuronal cell line and in lateral perforant path terminals naturally expressing mGlu2 and mGlu4. These results bring strong evidence for the existence of mGlu2-4 heterodimers in native cells. In addition to reporting a general approach to characterize heterodimeric mGluRs, our study opens new avenues to understanding the pathophysiological roles of mGlu heterodimers.

Article and author information

Author details

  1. David Moreno Delgado

    Institut de Genomique Fonctionnelle, CNRS, INSERM, Univ Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  2. Thor C Møller

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  3. Jeanne Ster

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Jesús Giraldo

    Laboratory of Molecular Neuropharmacology and Bioinformatics, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7082-4695
  5. Damien Maurel

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  6. Xavier Rovira

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9764-9927
  7. Pauline Scholler

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  8. Jurrian M Zwier

    Cisbio bioassays, Codolet, France
    Competing interests
    Jurrian M Zwier, Dr Zwier is working at Cisbio Bioassays, a company selling HTRF tools.
  9. Julie Perroy

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  10. Thierry Durroux

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  11. Eric Trinquet

    Cisbio bioassays, Codolet, France
    Competing interests
    Eric Trinquet, He is head of R&D at CisBio Bioassays.
  12. Laurent Prezeau

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  13. Philippe Rondard

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    Competing interests
    No competing interests declared.
  14. Jean-Philippe Pin

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
    For correspondence
    jppin@igf.cnrs.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1423-345X

Funding

Fondation recherche médicale DEQ20130326522 (DEQ20130326522)

  • Jean-Philippe Pin

CisBio bioassays (Laboratoire Collaboratif)

  • Jean-Philippe Pin

ERA-NET Neuron (PCIN-2013-018-C03-02)

  • Jesús Giraldo

ERA-NET Neuron (SAF2014-58396-R)

  • Jesús Giraldo

Agence Nationale de la Recherche (ANR-09-BIOT-018)

  • Eric Trinquet
  • Philippe Rondard
  • Jean-Philippe Pin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Moreno Delgado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,019
    views
  • 507
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Moreno Delgado
  2. Thor C Møller
  3. Jeanne Ster
  4. Jesús Giraldo
  5. Damien Maurel
  6. Xavier Rovira
  7. Pauline Scholler
  8. Jurrian M Zwier
  9. Julie Perroy
  10. Thierry Durroux
  11. Eric Trinquet
  12. Laurent Prezeau
  13. Philippe Rondard
  14. Jean-Philippe Pin
(2017)
Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells
eLife 6:e25233.
https://doi.org/10.7554/eLife.25233

Share this article

https://doi.org/10.7554/eLife.25233

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.