Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

  1. Keisuke Onishi
  2. Yimin Zou  Is a corresponding author
  1. University of California, San Diego, United States

Abstract

Commissural axons switch on responsiveness to Wnt attraction during midline crossing to turn anteriorly after exiting the floor plate. We report here Sonic Hedgehog (Shh) downregulates Shisa2, which inhibits glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior-posterior (A-P) axis. Loss of Shisa2 lead to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A-P axis when Wntless, essential for Wnt secretion, is conditionally knocked out in the floor plate. The regulatory link between Shh and PCP signaling may also occur in other developmental processes.

Article and author information

Author details

  1. Keisuke Onishi

    Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jalla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yimin Zou

    Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, United States
    For correspondence
    yzou@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1092-5547

Funding

NINDS (NS047484)

  • Yimin Zou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: Experiments were conducted in accordance with the NIH Guide for the Care and Use of LaboratoryAnimals and approved by the UCSD Animal Subjects Committee (Approved Protocol #: S06219, S06222).

Version history

  1. Received: January 19, 2017
  2. Accepted: August 17, 2017
  3. Accepted Manuscript published: September 8, 2017 (version 1)
  4. Version of Record published: September 18, 2017 (version 2)

Copyright

© 2017, Onishi & Zou

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,034
    Page views
  • 439
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keisuke Onishi
  2. Yimin Zou
(2017)
Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2
eLife 6:e25269.
https://doi.org/10.7554/eLife.25269

Share this article

https://doi.org/10.7554/eLife.25269

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.