1. Neuroscience
Download icon

Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

  1. Keisuke Onishi
  2. Yimin Zou  Is a corresponding author
  1. University of California, San Diego, United States
Research Article
  • Cited 18
  • Views 1,616
  • Annotations
Cite this article as: eLife 2017;6:e25269 doi: 10.7554/eLife.25269


Commissural axons switch on responsiveness to Wnt attraction during midline crossing to turn anteriorly after exiting the floor plate. We report here Sonic Hedgehog (Shh) downregulates Shisa2, which inhibits glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior-posterior (A-P) axis. Loss of Shisa2 lead to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A-P axis when Wntless, essential for Wnt secretion, is conditionally knocked out in the floor plate. The regulatory link between Shh and PCP signaling may also occur in other developmental processes.

Article and author information

Author details

  1. Keisuke Onishi

    Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jalla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yimin Zou

    Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1092-5547


NINDS (NS047484)

  • Yimin Zou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: Experiments were conducted in accordance with the NIH Guide for the Care and Use of LaboratoryAnimals and approved by the UCSD Animal Subjects Committee (Approved Protocol #: S06219, S06222).

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Publication history

  1. Received: January 19, 2017
  2. Accepted: August 17, 2017
  3. Accepted Manuscript published: September 8, 2017 (version 1)
  4. Version of Record published: September 18, 2017 (version 2)


© 2017, Onishi & Zou

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,616
    Page views
  • 389
  • 18

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Javier Alegre-Cortés et al.
    Research Article Updated

    Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.

    1. Neuroscience
    Ole Numssen et al.
    Research Article

    The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated functional specialization in the IPL supports some of the most distinctive human mental capacities.