Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

  1. Keisuke Onishi
  2. Yimin Zou  Is a corresponding author
  1. University of California, San Diego, United States

Abstract

Commissural axons switch on responsiveness to Wnt attraction during midline crossing to turn anteriorly after exiting the floor plate. We report here Sonic Hedgehog (Shh) downregulates Shisa2, which inhibits glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior-posterior (A-P) axis. Loss of Shisa2 lead to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A-P axis when Wntless, essential for Wnt secretion, is conditionally knocked out in the floor plate. The regulatory link between Shh and PCP signaling may also occur in other developmental processes.

Article and author information

Author details

  1. Keisuke Onishi

    Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jalla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yimin Zou

    Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, United States
    For correspondence
    yzou@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1092-5547

Funding

NINDS (NS047484)

  • Yimin Zou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in accordance with the NIH Guide for the Care and Use of LaboratoryAnimals and approved by the UCSD Animal Subjects Committee (Approved Protocol #: S06219, S06222).

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Publication history

  1. Received: January 19, 2017
  2. Accepted: August 17, 2017
  3. Accepted Manuscript published: September 8, 2017 (version 1)
  4. Version of Record published: September 18, 2017 (version 2)

Copyright

© 2017, Onishi & Zou

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,931
    Page views
  • 431
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keisuke Onishi
  2. Yimin Zou
(2017)
Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2
eLife 6:e25269.
https://doi.org/10.7554/eLife.25269

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Carolyn Elya, Danylo Lavrentovich ... Benjamin de Bivort
    Research Article Updated

    For at least two centuries, scientists have been enthralled by the “zombie” behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster “zombie fly” system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the “zombie fly” brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly’s hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.

    1. Neuroscience
    Flavia Venetucci Gouveia, Jurgen Germann ... Clement Hamani
    Research Article Updated

    Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas – together with patient age – were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.