Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome

  1. Shiran Ferber
  2. Galia Tiram
  3. Ana Sousa-Herves
  4. Anat Eldar-Boock
  5. Adva Krivitsky
  6. Anna Scomparin
  7. Eilam Yeini
  8. Paula Ofek
  9. Dikla Ben-Shushan
  10. Laura Isabel Vossen
  11. Kai Licha
  12. Rachel Grossman
  13. Zvi Ram
  14. Jack Henkin
  15. Eytan Ruppin
  16. Noam Auslander
  17. Rainer Haag
  18. Marcelo Calderón
  19. Ronit Satchi-Fainaro  Is a corresponding author
  1. Tel Aviv University, Israel
  2. Freie Universität Berlin, Germany
  3. Tel Aviv Sourasky Medical Center, Israel
  4. Northwestern University, United States
  5. University of Maryland, United States

Abstract

Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier. dPGS is able to cross the BBB, bind to P/L-selectins and accumulate selectively in intracranial tumors. We show that dPGS has dual targeting properties, as we found that P-selectin is not only expressed on tumor endothelium but also on glioblastoma cells. We delivered dPGS-PTX in combination with a peptidomimetic of the anti-angiogenic protein thrombospondin-1 (TSP-1 PM). This combination resulted in a remarkable synergistic anticancer effect on intracranial human and murine glioblastoma via induction of Fas and Fas-L, with no side effects compared to free PTX or temozolomide. This study shows that our unique therapeutic approach offers a viable alternative for the treatment of glioblastoma.

Article and author information

Author details

  1. Shiran Ferber

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Galia Tiram

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana Sousa-Herves

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anat Eldar-Boock

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Adva Krivitsky

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Scomparin

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Eilam Yeini

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Paula Ofek

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Dikla Ben-Shushan

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura Isabel Vossen

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Kai Licha

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Rachel Grossman

    Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Zvi Ram

    Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  14. Jack Henkin

    Chemistry of Life Processes Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eytan Ruppin

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  16. Noam Auslander

    Department of Computer science, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Rainer Haag

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Marcelo Calderón

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  19. Ronit Satchi-Fainaro

    Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    ronitsf@post.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7360-7837

Funding

H2020 European Research Council (617445)

  • Ronit Satchi-Fainaro

Israel Science Foundation (918/14)

  • Ronit Satchi-Fainaro

Israel Cancer Association (20150909)

  • Ronit Satchi-Fainaro

Bundesministerium für Bildung und Forschung (13N11536)

  • Rainer Haag

Bundesministerium für Bildung und Forschung (13N12561)

  • Marcelo Calderón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were housed in the Tel Aviv University animal facility. The experiments were approved by the animal care and use committee (IACUC) of Tel Aviv University (approval no. 01-12-064, 01-12-065) and conducted in accordance with NIH guidelines.

Human subjects: Experiments involving human tissues were performed with the approval of the Institutional Review Board (IRB) and in compliance with all legal and ethical considerations for human subject research (approval no. 0735-13-TLV). Single human plasma was obtained from a healthy consented unmedicated donor according to German ethical guidelines.

Copyright

© 2017, Ferber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,007
    views
  • 583
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shiran Ferber
  2. Galia Tiram
  3. Ana Sousa-Herves
  4. Anat Eldar-Boock
  5. Adva Krivitsky
  6. Anna Scomparin
  7. Eilam Yeini
  8. Paula Ofek
  9. Dikla Ben-Shushan
  10. Laura Isabel Vossen
  11. Kai Licha
  12. Rachel Grossman
  13. Zvi Ram
  14. Jack Henkin
  15. Eytan Ruppin
  16. Noam Auslander
  17. Rainer Haag
  18. Marcelo Calderón
  19. Ronit Satchi-Fainaro
(2017)
Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome
eLife 6:e25281.
https://doi.org/10.7554/eLife.25281

Share this article

https://doi.org/10.7554/eLife.25281

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.

    1. Cancer Biology
    Yang Peng, Jing Yang ... Liang Weng
    Research Article

    Background:

    Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.

    Methods:

    We performed single-cell RNA sequencing on 11 samples of ADC tumor tissues, with other 4 SCC samples served as controls. The immunochemistry and multiplexed immunofluorescence were conducted to validate our findings.

    Results:

    Compared to SCC, ADC exhibited unique enrichments in several sub-clusters of epithelial cells with elevated stemness and hyper-malignant features, including the Epi_10_CYSTM1 cluster. ADC displayed a highly immunosuppressive environment characterized by the enrichment of regulatory T cells (Tregs) and tumor-promoting neutrophils. The Epi_10_CYSTM1 cluster recruits Tregs via ALCAM-CD6 signaling, while Tregs reciprocally induce stemness in the Epi_10_CYSTM1 cluster through TGFβ signaling. Importantly, our study revealed that the Epi_10_CYSTM1 cluster could serve as a valuable predictor of lymph node metastasis for CC patients.

    Conclusions:

    This study highlights the significance of ADC-specific cell clusters in establishing a highly immunosuppressive microenvironment, ultimately contributing to the heightened aggressiveness and poorer prognosis of ADC compared to SCC.

    Funding:

    Funded by the National Natural Science Foundation of China (82002753; 82072882; 81500475) and the Natural Science Foundation of Hunan Province (2021JJ40324; 2022JJ70103).