A genetic basis for molecular asymmetry at vertebrate electrical synapses

  1. Adam C Miller  Is a corresponding author
  2. Alex C Whitebirch
  3. Arish N Shah
  4. Kurt C Marsden
  5. Michael Granato
  6. John O'Brien
  7. Cecilia B Moens
  1. Univeristy of Oregon, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. University of Pennsylvania Perelman School of Medicine, United States
  4. McGovern Medical School, University of Texas Health Sciences Center at Houston, United States

Abstract

Neural network function is based upon the patterns and types of connections made between neurons. Neuronal synapses are adhesions specialized for communication and they come in two types, chemical and electrical. Communication at chemical synapses occurs via neurotransmitter release whereas electrical synapses utilize gap junctions for direct ionic and metabolic coupling. Electrical synapses are often viewed as symmetrical structures, with the same components making both sides of the gap junction. By contrast, we show that a broad set of electrical synapses in zebrafish, Danio rerio, require two gap-junction-forming Connexins for formation and function. We find that one Connexin functions presynaptically while the other functions postsynaptically in forming the channels. We also show that these synapses are required for the speed and coordination of escape responses. Our data identify a genetic basis for molecular asymmetry at vertebrate electrical synapses and show they are required for appropriate behavioral performance.

Data availability

The following data sets were generated
    1. Miller
    (2013) Dis2 RNA-seq wildtype and mutant
    Publicly available at the NCBI Sequence Read Archive (accession no: PRJNA172016).

Article and author information

Author details

  1. Adam C Miller

    Institute of Neuroscience, Univeristy of Oregon, Eugene, United States
    For correspondence
    acmiller@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7519-3677
  2. Alex C Whitebirch

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Arish N Shah

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kurt C Marsden

    Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Granato

    Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John O'Brien

    Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0270-3442
  7. Cecilia B Moens

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (F32NS074839)

  • Adam C Miller

National Institute of Mental Health (R01MH109498)

  • Michael Granato

National Eye Institute (R01EY012857)

  • John O'Brien

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD076585)

  • Cecilia B Moens

National Institute of Neurological Disorders and Stroke (R21NS076950)

  • Cecilia B Moens

National Institute of Neurological Disorders and Stroke (K99/R00NS085035)

  • Adam C Miller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were raised in an Institutional Animal Care and Use Committee (IACUC)-approvedfacility at the Fred Hutchinson Cancer Research Center (Study ID 50552, Submittal ID 7237, IRO #1392).

Copyright

© 2017, Miller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,142
    views
  • 421
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam C Miller
  2. Alex C Whitebirch
  3. Arish N Shah
  4. Kurt C Marsden
  5. Michael Granato
  6. John O'Brien
  7. Cecilia B Moens
(2017)
A genetic basis for molecular asymmetry at vertebrate electrical synapses
eLife 6:e25364.
https://doi.org/10.7554/eLife.25364

Share this article

https://doi.org/10.7554/eLife.25364

Further reading

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.