Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing
Abstract
Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.
Article and author information
Author details
Funding
FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 (Norte-01-0145-FEDER-000029)
- Margarida Moura
- Claudio E Sunkel
- Carlos Conde
Fundação para a Ciência e a Tecnologia (PTDC7BEX-BCM/1921/2014-PR041602)
- Claudio E Sunkel
Fundação para a Ciência e a Tecnologia (PEst-C/SAU/LA0002/2013-Incentivo2014-BGCT)
- Claudio E Sunkel
Fundação para a Ciência e a Tecnologia (FCT Investigator grant IF/01755/2014)
- Carlos Conde
Fundação para a Ciência e a Tecnologia (GABBA PhD Program grant PD/BD/105746/2014)
- Mariana Osswald
Fundação para a Ciência e a Tecnologia (FCT PhD grant SFRH/BD/87871/2012)
- João Barbosa
European Research Council (PRECISE)
- Helder Maiato
European Research Council (CODECHECK)
- Helder Maiato
FLAD Life Science
- Helder Maiato
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Moura et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,560
- views
-
- 735
- downloads
-
- 55
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.
-
- Cell Biology
Diacylglycerols (DAGs) are used for metabolic purposes and are tightly regulated secondary lipid messengers in eukaryotes. DAG subspecies with different fatty-acyl chains are proposed to be involved in the activation of distinct PKC isoforms, resulting in diverse physiological outcomes. However, the molecular players and the regulatory origin for fine-tuning the PKC pathway are unknown. Here, we show that Dip2, a conserved DAG regulator across Fungi and Animalia, has emerged as a modulator of PKC signalling in yeast. Dip2 maintains the level of a specific DAG subpopulation, required for the activation of PKC-mediated cell wall integrity pathway. Interestingly, the canonical DAG-metabolism pathways, being promiscuous, are decoupled from PKC signalling. We demonstrate that these DAG subspecies are sourced from a phosphatidylinositol pool generated by the acyl-chain remodelling pathway. Furthermore, we provide insights into the intimate coevolutionary relationship between the regulator (Dip2) and the effector (PKC) of DAG-based signalling. Hence, our study underscores the establishment of Dip2-PKC axis about 1.2 billion years ago in Opisthokonta, which marks the rooting of the first specific DAG-based signalling module of eukaryotes.