Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel  Is a corresponding author
  8. Carlos Conde  Is a corresponding author
  1. i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

Article and author information

Author details

  1. Margarida Moura

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Osswald

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson Leça

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. João Barbosa

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. António J Pereira

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Helder Maiato

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio E Sunkel

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cesunkel@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
  8. Carlos Conde

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cconde@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4177-8519

Funding

FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 (Norte-01-0145-FEDER-000029)

  • Margarida Moura
  • Claudio E Sunkel
  • Carlos Conde

Fundação para a Ciência e a Tecnologia (PTDC7BEX-BCM/1921/2014-PR041602)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (PEst-C/SAU/LA0002/2013-Incentivo2014-BGCT)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (FCT Investigator grant IF/01755/2014)

  • Carlos Conde

Fundação para a Ciência e a Tecnologia (GABBA PhD Program grant PD/BD/105746/2014)

  • Mariana Osswald

Fundação para a Ciência e a Tecnologia (FCT PhD grant SFRH/BD/87871/2012)

  • João Barbosa

European Research Council (PRECISE)

  • Helder Maiato

European Research Council (CODECHECK)

  • Helder Maiato

FLAD Life Science

  • Helder Maiato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Moura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,492
    views
  • 731
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel
  8. Carlos Conde
(2017)
Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing
eLife 6:e25366.
https://doi.org/10.7554/eLife.25366

Share this article

https://doi.org/10.7554/eLife.25366

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).