Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel  Is a corresponding author
  8. Carlos Conde  Is a corresponding author
  1. i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

Article and author information

Author details

  1. Margarida Moura

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Osswald

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson Leça

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. João Barbosa

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. António J Pereira

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Helder Maiato

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio E Sunkel

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cesunkel@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
  8. Carlos Conde

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cconde@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4177-8519

Funding

FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 (Norte-01-0145-FEDER-000029)

  • Margarida Moura
  • Claudio E Sunkel
  • Carlos Conde

Fundação para a Ciência e a Tecnologia (PTDC7BEX-BCM/1921/2014-PR041602)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (PEst-C/SAU/LA0002/2013-Incentivo2014-BGCT)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (FCT Investigator grant IF/01755/2014)

  • Carlos Conde

Fundação para a Ciência e a Tecnologia (GABBA PhD Program grant PD/BD/105746/2014)

  • Mariana Osswald

Fundação para a Ciência e a Tecnologia (FCT PhD grant SFRH/BD/87871/2012)

  • João Barbosa

European Research Council (PRECISE)

  • Helder Maiato

European Research Council (CODECHECK)

  • Helder Maiato

FLAD Life Science

  • Helder Maiato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: January 23, 2017
  2. Accepted: April 29, 2017
  3. Accepted Manuscript published: May 2, 2017 (version 1)
  4. Accepted Manuscript updated: May 4, 2017 (version 2)
  5. Version of Record published: May 16, 2017 (version 3)

Copyright

© 2017, Moura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,941
    views
  • 711
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel
  8. Carlos Conde
(2017)
Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing
eLife 6:e25366.
https://doi.org/10.7554/eLife.25366

Share this article

https://doi.org/10.7554/eLife.25366

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.