Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel  Is a corresponding author
  8. Carlos Conde  Is a corresponding author
  1. i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

Article and author information

Author details

  1. Margarida Moura

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Osswald

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson Leça

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. João Barbosa

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  5. António J Pereira

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Helder Maiato

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudio E Sunkel

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cesunkel@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
  8. Carlos Conde

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    cconde@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4177-8519

Funding

FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 (Norte-01-0145-FEDER-000029)

  • Margarida Moura
  • Claudio E Sunkel
  • Carlos Conde

Fundação para a Ciência e a Tecnologia (PTDC7BEX-BCM/1921/2014-PR041602)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (PEst-C/SAU/LA0002/2013-Incentivo2014-BGCT)

  • Claudio E Sunkel

Fundação para a Ciência e a Tecnologia (FCT Investigator grant IF/01755/2014)

  • Carlos Conde

Fundação para a Ciência e a Tecnologia (GABBA PhD Program grant PD/BD/105746/2014)

  • Mariana Osswald

Fundação para a Ciência e a Tecnologia (FCT PhD grant SFRH/BD/87871/2012)

  • João Barbosa

European Research Council (PRECISE)

  • Helder Maiato

European Research Council (CODECHECK)

  • Helder Maiato

FLAD Life Science

  • Helder Maiato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Moura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,560
    views
  • 735
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarida Moura
  2. Mariana Osswald
  3. Nelson Leça
  4. João Barbosa
  5. António J Pereira
  6. Helder Maiato
  7. Claudio E Sunkel
  8. Carlos Conde
(2017)
Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing
eLife 6:e25366.
https://doi.org/10.7554/eLife.25366

Share this article

https://doi.org/10.7554/eLife.25366

Further reading

    1. Cell Biology
    Peipei Xu, Rui Zhang ... Wenxiang Meng
    Research Article

    The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.

    1. Cell Biology
    Sakshi Shambhavi, Sudipta Mondal ... Rajan Sankaranarayanan
    Research Article

    Diacylglycerols (DAGs) are used for metabolic purposes and are tightly regulated secondary lipid messengers in eukaryotes. DAG subspecies with different fatty-acyl chains are proposed to be involved in the activation of distinct PKC isoforms, resulting in diverse physiological outcomes. However, the molecular players and the regulatory origin for fine-tuning the PKC pathway are unknown. Here, we show that Dip2, a conserved DAG regulator across Fungi and Animalia, has emerged as a modulator of PKC signalling in yeast. Dip2 maintains the level of a specific DAG subpopulation, required for the activation of PKC-mediated cell wall integrity pathway. Interestingly, the canonical DAG-metabolism pathways, being promiscuous, are decoupled from PKC signalling. We demonstrate that these DAG subspecies are sourced from a phosphatidylinositol pool generated by the acyl-chain remodelling pathway. Furthermore, we provide insights into the intimate coevolutionary relationship between the regulator (Dip2) and the effector (PKC) of DAG-based signalling. Hence, our study underscores the establishment of Dip2-PKC axis about 1.2 billion years ago in Opisthokonta, which marks the rooting of the first specific DAG-based signalling module of eukaryotes.