Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon

  1. Yang Zhang
  2. Dirk M Bucher
  3. Farzan Nadim  Is a corresponding author
  1. New Jersey Institute of Technology, United States

Abstract

Axonal conduction velocity can change substantially during ongoing activity, thus modifying spike interval structures and, potentially, temporal coding. We used a biophysical model to unmask mechanisms underlying the history-dependence of conduction. The model replicates activity in the unmyelinated axon of the crustacean stomatogastric pyloric dilator neuron. At the timescale of a single burst, conduction delay has a non-monotonic relationship with instantaneous frequency, which depends on the gating rates of the fast voltage-gated Na+ current. At the slower timescale of minutes, the mean value and variability of conduction delay increase. These effects are due to hyperpolarization of the baseline membrane potential by the Na+/K+ pump, balanced by an h-current, both of which affect the gating of the Na+ current. We explore the mechanisms of history-dependence of conduction delay in axons and develop an empirical equation that accurately predicts this history-dependence, both in the model and in experimental measurements.

Article and author information

Author details

  1. Yang Zhang

    Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dirk M Bucher

    Biological Sceicnes, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Farzan Nadim

    Biological Sciences, New Jersey Institute of Technology, Newark, United States
    For correspondence
    farzan@njit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4144-9042

Funding

National Institute of Neurological Disorders and Stroke (NS083319)

  • Dirk M Bucher
  • Farzan Nadim

National Institute of Mental Health (MH060505)

  • Farzan Nadim

National Institute of Neurological Disorders and Stroke (NS058825)

  • Dirk M Bucher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frances K Skinner, University Health Network, Canada

Version history

  1. Received: January 23, 2017
  2. Accepted: July 6, 2017
  3. Accepted Manuscript published: July 10, 2017 (version 1)
  4. Version of Record published: July 20, 2017 (version 2)

Copyright

© 2017, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,162
    views
  • 213
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Zhang
  2. Dirk M Bucher
  3. Farzan Nadim
(2017)
Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon
eLife 6:e25382.
https://doi.org/10.7554/eLife.25382

Share this article

https://doi.org/10.7554/eLife.25382

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.