Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration
Abstract
Zebrafish display a distinct ability to regenerate their heart following injury. However, this ability is not shared by another teleost, the medaka. In order to identify cellular and molecular bases for this difference, we performed comparative transcriptomic analyses following cardiac cryoinjury. This comparison points to major differences in immune cell dynamics between these models. Upon closer examination, we observed delayed and reduced macrophage recruitment in medaka, along with delayed neutrophil clearance. To investigate the role of immune responses in cardiac regeneration, we delayed macrophage recruitment in zebrafish and observed compromised neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. In contrast, stimulating Toll-like receptor signaling in medaka enhanced immune cell dynamics and promoted neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. Altogether, these data provide further insight into the complex role of the immune response during regeneration, and serve as a platform to identify and test additional regulators of cardiac repair.
Data availability
-
Comparative transcriptome profiling of zebrafish and medaka hearts following cardiac cryoinjuryPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE94617).
Article and author information
Author details
Funding
Max-Planck-Gesellschaft (Open-access funding)
- Didier YR Stainier
The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All zebrafish and medaka husbandry was performed under standard conditions, and all animal experiments were done in accordance with institutional (MPG) and national ethical and animal welfare guidelines approved by the ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany (permit numbers B2-1023 and B2-1111).
Copyright
© 2017, Stainier et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,934
- views
-
- 1,464
- downloads
-
- 219
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
-
- Cell Biology
- Developmental Biology
A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.