Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration
Abstract
Zebrafish display a distinct ability to regenerate their heart following injury. However, this ability is not shared by another teleost, the medaka. In order to identify cellular and molecular bases for this difference, we performed comparative transcriptomic analyses following cardiac cryoinjury. This comparison points to major differences in immune cell dynamics between these models. Upon closer examination, we observed delayed and reduced macrophage recruitment in medaka, along with delayed neutrophil clearance. To investigate the role of immune responses in cardiac regeneration, we delayed macrophage recruitment in zebrafish and observed compromised neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. In contrast, stimulating Toll-like receptor signaling in medaka enhanced immune cell dynamics and promoted neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. Altogether, these data provide further insight into the complex role of the immune response during regeneration, and serve as a platform to identify and test additional regulators of cardiac repair.
Data availability
-
Comparative transcriptome profiling of zebrafish and medaka hearts following cardiac cryoinjuryPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE94617).
Article and author information
Author details
Funding
Max-Planck-Gesellschaft (Open-access funding)
- Didier YR Stainier
The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All zebrafish and medaka husbandry was performed under standard conditions, and all animal experiments were done in accordance with institutional (MPG) and national ethical and animal welfare guidelines approved by the ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany (permit numbers B2-1023 and B2-1111).
Copyright
© 2017, Stainier et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,438
- views
-
- 1,435
- downloads
-
- 213
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.
-
- Developmental Biology
The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.