Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration

  1. Didier YR Stainier  Is a corresponding author
  2. Shih-Lei Ben Lai  Is a corresponding author
  3. Rubén Marín-Juez
  4. Pedro Luís Moura
  5. Carsten Kuenne
  6. Jason Kuan Han Lai
  7. Ayele Taddese Tsedeke
  8. Stefan Guenther
  9. Mario Looso
  1. Max Planck Institute for Heart and Lung Research, Germany
  2. University of Bristol, United Kingdom

Abstract

Zebrafish display a distinct ability to regenerate their heart following injury. However, this ability is not shared by another teleost, the medaka. In order to identify cellular and molecular bases for this difference, we performed comparative transcriptomic analyses following cardiac cryoinjury. This comparison points to major differences in immune cell dynamics between these models. Upon closer examination, we observed delayed and reduced macrophage recruitment in medaka, along with delayed neutrophil clearance. To investigate the role of immune responses in cardiac regeneration, we delayed macrophage recruitment in zebrafish and observed compromised neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. In contrast, stimulating Toll-like receptor signaling in medaka enhanced immune cell dynamics and promoted neovascularization, neutrophil clearance, cardiomyocyte proliferation and scar resolution. Altogether, these data provide further insight into the complex role of the immune response during regeneration, and serve as a platform to identify and test additional regulators of cardiac repair.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026
  2. Shih-Lei Ben Lai

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    ben.lai@mpi-bn.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1409-4701
  3. Rubén Marín-Juez

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Pedro Luís Moura

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  5. Carsten Kuenne

    ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  6. Jason Kuan Han Lai

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  7. Ayele Taddese Tsedeke

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  8. Stefan Guenther

    ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  9. Mario Looso

    ECCPS Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Didier YR Stainier

The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish and medaka husbandry was performed under standard conditions, and all animal experiments were done in accordance with institutional (MPG) and national ethical and animal welfare guidelines approved by the ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany (permit numbers B2-1023 and B2-1111).

Copyright

© 2017, Stainier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,944
    views
  • 1,466
    downloads
  • 221
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Didier YR Stainier
  2. Shih-Lei Ben Lai
  3. Rubén Marín-Juez
  4. Pedro Luís Moura
  5. Carsten Kuenne
  6. Jason Kuan Han Lai
  7. Ayele Taddese Tsedeke
  8. Stefan Guenther
  9. Mario Looso
(2017)
Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration
eLife 6:e25605.
https://doi.org/10.7554/eLife.25605

Share this article

https://doi.org/10.7554/eLife.25605

Further reading

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.