1. Neuroscience
Download icon

Theta oscillations locked to intended actions rhythmically modulate perception

  1. Alice Tomassini  Is a corresponding author
  2. Luca Ambrogioni
  3. W Pieter Medendorp
  4. Eric Maris  Is a corresponding author
  1. Radboud University Nijmegen, Netherlands
  2. Radboud University, Netherlands
Research Article
  • Cited 26
  • Views 2,255
  • Annotations
Cite this article as: eLife 2017;6:e25618 doi: 10.7554/eLife.25618

Abstract

Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

Article and author information

Author details

  1. Alice Tomassini

    Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Radboud University Nijmegen, Nijmegen, Netherlands
    For correspondence
    a.tomassini@donders.ru.nl
    Competing interests
    The authors declare that no competing interests exist.
  2. Luca Ambrogioni

    Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. W Pieter Medendorp

    Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9615-4220
  4. Eric Maris

    Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Radboud University, Nijmegen, Netherlands
    For correspondence
    e.maris@donders.ru.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5166-1800

Funding

European Research Council (EU-ERC-238-567)

  • W Pieter Medendorp

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-VICI: 453-11-00)

  • W Pieter Medendorp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study and experimental procedures were approved by the local Ethical Review Board (Ethics Committee of the Faculty of Social Sciences, Radboud University, The Netherlands). Participants provided written, informed consent after explanation of the task and experimental procedures, in accordance with the guidelines of the local Ethical Review Board.

Reviewing Editor

  1. Benjamin Morillon, Aix-Marseille University, France

Publication history

  1. Received: January 31, 2017
  2. Accepted: July 6, 2017
  3. Accepted Manuscript published: July 7, 2017 (version 1)
  4. Version of Record published: August 11, 2017 (version 2)

Copyright

© 2017, Tomassini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,255
    Page views
  • 448
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Amanda M Zimmet et al.
    Research Article Updated

    It is thought that the brain does not simply react to sensory feedback, but rather uses an internal model of the body to predict the consequences of motor commands before sensory feedback arrives. Time-delayed sensory feedback can then be used to correct for the unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated in this predictive control process. Here, we show that the feedback gain in patients with cerebellar ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. This difference is captured by a computational model incorporating a Smith predictor in healthy subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback control. Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) the visual feedback they receive from their own self movement in a simplified virtual reality setup.

    1. Developmental Biology
    2. Neuroscience
    Amir Rattner et al.
    Tools and Resources

    In the hippocampus, a widely accepted model posits that the dentate gyrus improves learning and memory by enhancing discrimination between inputs. To test this model, we studied conditional knockout mice in which the vast majority of dentate granule cells (DGCs) fail to develop – including nearly all DGCs in the dorsal hippocampus – secondary to eliminating Wntless (Wls) in a subset of cortical progenitors with Gfap-Cre. Other cells in the Wlsfl/-;Gfap-Cre hippocampus were minimally affected, as determined by single nucleus RNA sequencing. CA3 pyramidal cells, the targets of DGC-derived mossy fibers, exhibited normal morphologies with a small reduction in the numbers of synaptic spines. Wlsfl/-;Gfap-Cre mice have a modest performance decrement in several complex spatial tasks, including active place avoidance. They were also modestly impaired in one simpler spatial task, finding a visible platform in the Morris water maze. These experiments support a role for DGCs in enhancing spatial learning and memory.