Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment
Abstract
Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (1), autism spectrum disorder (2), intellectual disability (3), and corpus callosum agenesis (4). In addition, ARID1B is the most common cause of Coffin-Siris Syndrome, a developmental delay syndrome characterized by some of the above abnormalities (5-7). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth Hormone Releasing Hormone (GHRH) and Growth Hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.
Data availability
-
RNA-seq transcriptonal profiling in whole hippocampus in WT and Arid1b+/- micePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE92238).
-
mouse_e11.5_forebrain_smarca4-flagvailable at the NCBI Gene Expression Omnibus (accession no: GSM912547).
-
Genome-Wide Transcriptional Regulation Mediated By Biochemically Distinct Forms of SWI/SNFPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE69568).
Article and author information
Author details
Funding
Hamon Center for Regenerative Science and Medicine
- Cemre Celen
- Xuxu Sun
National Institutes of Health (DA023555)
- Amelia J Eisch
National Institutes of Health (MH107945)
- Amelia J Eisch
Postdoctoral Institutional training grant (NIDA T32-DA007290)
- Angela K Walker
HHMI International Fellowship
- Liem H Nguyen
Pollack Foundation
- Hao Zhu
National Institutes of Health (1K08CA157727)
- Hao Zhu
National Cancer Institute (1R01CA190525)
- Hao Zhu
Burroughs Wellcome Fund
- Hao Zhu
CPRIT New Investigator Award (R1209)
- Hao Zhu
CPRIT Early Translation Grant (DP150077)
- Hao Zhu
National Institutes of Health (DA023701)
- Amelia J Eisch
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Revised ethics statement: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patient/parents.
Human subjects: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patients.
Copyright
© 2017, Zhu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,187
- views
-
- 801
- downloads
-
- 88
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.
-
- Neuroscience
Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.