Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment

  1. Cemre Celen
  2. Jen-Chieh Chuang
  3. Xin Luo
  4. Nadine Nijem
  5. Angela K Walker
  6. Fei Chen
  7. Shuyuan Zhang
  8. Andrew Seungjae Chung
  9. Liem H Nguyen
  10. Ibrahim Nassour
  11. Albert Budhipramono
  12. Xuxu Sun
  13. Levinus A Bok
  14. Meriel McEntagart
  15. Evelien Gevers
  16. Shari G Birnbaum
  17. Amelia J Eisch
  18. Craig M Powell
  19. Woo-Ping Ge
  20. Gijs WE Santen
  21. Maria Chahrour
  22. Hao Zhu  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. University of Texas Southwestern Medical Center, United States
  3. Máxima Medical Center, Netherlands
  4. St George's University Hospitals, NHS Foundation Trust, United Kingdom
  5. Queen Mary University of London, United Kingdom
  6. University of Pennsylvania, United States
  7. Leiden University Medical Center, Netherlands

Abstract

Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (1), autism spectrum disorder (2), intellectual disability (3), and corpus callosum agenesis (4). In addition, ARID1B is the most common cause of Coffin-Siris Syndrome, a developmental delay syndrome characterized by some of the above abnormalities (5-7). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth Hormone Releasing Hormone (GHRH) and Growth Hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Cemre Celen

    The Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jen-Chieh Chuang

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xin Luo

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadine Nijem

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela K Walker

    Department of Neurology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fei Chen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shuyuan Zhang

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Seungjae Chung

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Liem H Nguyen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ibrahim Nassour

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Albert Budhipramono

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Xuxu Sun

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Levinus A Bok

    Department of Pediatrics, Máxima Medical Center, Veldhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Meriel McEntagart

    Medical Genetics, St George's University Hospitals, NHS Foundation Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Evelien Gevers

    William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Shari G Birnbaum

    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Amelia J Eisch

    Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Craig M Powell

    Department of Neurology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Woo-Ping Ge

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Gijs WE Santen

    Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Maria Chahrour

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Hao Zhu

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Hao.Zhu@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8417-9698

Funding

Hamon Center for Regenerative Science and Medicine

  • Cemre Celen
  • Xuxu Sun

National Institutes of Health (DA023555)

  • Amelia J Eisch

National Institutes of Health (MH107945)

  • Amelia J Eisch

Postdoctoral Institutional training grant (NIDA T32-DA007290)

  • Angela K Walker

HHMI International Fellowship

  • Liem H Nguyen

Pollack Foundation

  • Hao Zhu

National Institutes of Health (1K08CA157727)

  • Hao Zhu

National Cancer Institute (1R01CA190525)

  • Hao Zhu

Burroughs Wellcome Fund

  • Hao Zhu

CPRIT New Investigator Award (R1209)

  • Hao Zhu

CPRIT Early Translation Grant (DP150077)

  • Hao Zhu

National Institutes of Health (DA023701)

  • Amelia J Eisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Revised ethics statement: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patient/parents.

Human subjects: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patients.

Copyright

© 2017, Celen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,235
    views
  • 806
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cemre Celen
  2. Jen-Chieh Chuang
  3. Xin Luo
  4. Nadine Nijem
  5. Angela K Walker
  6. Fei Chen
  7. Shuyuan Zhang
  8. Andrew Seungjae Chung
  9. Liem H Nguyen
  10. Ibrahim Nassour
  11. Albert Budhipramono
  12. Xuxu Sun
  13. Levinus A Bok
  14. Meriel McEntagart
  15. Evelien Gevers
  16. Shari G Birnbaum
  17. Amelia J Eisch
  18. Craig M Powell
  19. Woo-Ping Ge
  20. Gijs WE Santen
  21. Maria Chahrour
  22. Hao Zhu
(2017)
Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment
eLife 6:e25730.
https://doi.org/10.7554/eLife.25730

Share this article

https://doi.org/10.7554/eLife.25730

Further reading

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.