Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment

  1. Cemre Celen
  2. Jen-Chieh Chuang
  3. Xin Luo
  4. Nadine Nijem
  5. Angela K Walker
  6. Fei Chen
  7. Shuyuan Zhang
  8. Andrew Seungjae Chung
  9. Liem H Nguyen
  10. Ibrahim Nassour
  11. Albert Budhipramono
  12. Xuxu Sun
  13. Levinus A Bok
  14. Meriel McEntagart
  15. Evelien Gevers
  16. Shari G Birnbaum
  17. Amelia J Eisch
  18. Craig M Powell
  19. Woo-Ping Ge
  20. Gijs WE Santen
  21. Maria Chahrour
  22. Hao Zhu  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. University of Texas Southwestern Medical Center, United States
  3. Máxima Medical Center, Netherlands
  4. St George's University Hospitals, NHS Foundation Trust, United Kingdom
  5. Queen Mary University of London, United Kingdom
  6. University of Pennsylvania, United States
  7. Leiden University Medical Center, Netherlands

Abstract

Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (1), autism spectrum disorder (2), intellectual disability (3), and corpus callosum agenesis (4). In addition, ARID1B is the most common cause of Coffin-Siris Syndrome, a developmental delay syndrome characterized by some of the above abnormalities (5-7). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth Hormone Releasing Hormone (GHRH) and Growth Hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Cemre Celen

    The Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jen-Chieh Chuang

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xin Luo

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadine Nijem

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela K Walker

    Department of Neurology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fei Chen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shuyuan Zhang

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Seungjae Chung

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Liem H Nguyen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ibrahim Nassour

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Albert Budhipramono

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Xuxu Sun

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Levinus A Bok

    Department of Pediatrics, Máxima Medical Center, Veldhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Meriel McEntagart

    Medical Genetics, St George's University Hospitals, NHS Foundation Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Evelien Gevers

    William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Shari G Birnbaum

    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Amelia J Eisch

    Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Craig M Powell

    Department of Neurology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Woo-Ping Ge

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Gijs WE Santen

    Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Maria Chahrour

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Hao Zhu

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Hao.Zhu@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8417-9698

Funding

Hamon Center for Regenerative Science and Medicine

  • Cemre Celen
  • Xuxu Sun

National Institutes of Health (DA023555)

  • Amelia J Eisch

National Institutes of Health (MH107945)

  • Amelia J Eisch

Postdoctoral Institutional training grant (NIDA T32-DA007290)

  • Angela K Walker

HHMI International Fellowship

  • Liem H Nguyen

Pollack Foundation

  • Hao Zhu

National Institutes of Health (1K08CA157727)

  • Hao Zhu

National Cancer Institute (1R01CA190525)

  • Hao Zhu

Burroughs Wellcome Fund

  • Hao Zhu

CPRIT New Investigator Award (R1209)

  • Hao Zhu

CPRIT Early Translation Grant (DP150077)

  • Hao Zhu

National Institutes of Health (DA023701)

  • Amelia J Eisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Revised ethics statement: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patient/parents.

Human subjects: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patients.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Publication history

  1. Received: February 3, 2017
  2. Accepted: June 24, 2017
  3. Accepted Manuscript published: July 11, 2017 (version 1)
  4. Accepted Manuscript updated: July 13, 2017 (version 2)
  5. Version of Record published: July 18, 2017 (version 3)

Copyright

© 2017, Celen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,247
    Page views
  • 692
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cemre Celen
  2. Jen-Chieh Chuang
  3. Xin Luo
  4. Nadine Nijem
  5. Angela K Walker
  6. Fei Chen
  7. Shuyuan Zhang
  8. Andrew Seungjae Chung
  9. Liem H Nguyen
  10. Ibrahim Nassour
  11. Albert Budhipramono
  12. Xuxu Sun
  13. Levinus A Bok
  14. Meriel McEntagart
  15. Evelien Gevers
  16. Shari G Birnbaum
  17. Amelia J Eisch
  18. Craig M Powell
  19. Woo-Ping Ge
  20. Gijs WE Santen
  21. Maria Chahrour
  22. Hao Zhu
(2017)
Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment
eLife 6:e25730.
https://doi.org/10.7554/eLife.25730

Further reading

    1. Neuroscience
    Payel Chatterjee et al.
    Research Article

    During flight maneuvers, insects exhibit compensatory head movements which are essential for stabilizing the visual field on their retina, reducing motion blur, and supporting visual self-motion estimation. In Diptera, such head movements are mediated via visual feedback from their compound eyes that detect retinal slip, as well as rapid mechanosensory feedback from their halteres - the modified hindwings that sense the angular rates of body rotations. Because non-Dipteran insects lack halteres, it is not known if mechanosensory feedback about body rotations plays any role in their head stabilization response. Diverse non-Dipteran insects are known to rely on visual and antennal mechanosensory feedback for flight control. In hawkmoths, for instance, reduction of antennal mechanosensory feedback severely compromises their ability to control flight. Similarly, when the head movements of freely-flying moths are restricted, their flight ability is also severely impaired. The role of compensatory head movements as well as multimodal feedback in insect flight raises an interesting question: in insects that lack halteres, what sensory cues are required for head stabilization? Here, we show that in the nocturnal hawkmoth Daphnis nerii, compensatory head movements are mediated by combined visual and antennal mechanosensory feedback. We subjected tethered moths to open-loop body roll rotations under different lighting conditions, and measured their ability to maintain head angle in the presence or absence of antennal mechanosensory feedback. Our study suggests that head stabilization in moths is mediated primarily by visual feedback during roll movements at lower frequencies, whereas antennal mechanosensory feedback is required when roll occurs at higher frequency. These findings are consistent with the hypothesis that control of head angle results from a multimodal feedback loop that integrates both visual and antennal mechanosensory feedback, albeit at different latencies. At adequate light levels, visual feedback is sufficient for head stabilization primarily at low frequencies of body roll. However, under dark conditions, antennal mechanosensory feedback is essential for the control of head movements at high of body roll.

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.