Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment
Abstract
Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (1), autism spectrum disorder (2), intellectual disability (3), and corpus callosum agenesis (4). In addition, ARID1B is the most common cause of Coffin-Siris Syndrome, a developmental delay syndrome characterized by some of the above abnormalities (5-7). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth Hormone Releasing Hormone (GHRH) and Growth Hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.
Data availability
-
RNA-seq transcriptonal profiling in whole hippocampus in WT and Arid1b+/- micePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE92238).
-
mouse_e11.5_forebrain_smarca4-flagvailable at the NCBI Gene Expression Omnibus (accession no: GSM912547).
-
Genome-Wide Transcriptional Regulation Mediated By Biochemically Distinct Forms of SWI/SNFPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE69568).
Article and author information
Author details
Funding
Hamon Center for Regenerative Science and Medicine
- Cemre Celen
- Xuxu Sun
National Institutes of Health (DA023555)
- Amelia J Eisch
National Institutes of Health (MH107945)
- Amelia J Eisch
Postdoctoral Institutional training grant (NIDA T32-DA007290)
- Angela K Walker
HHMI International Fellowship
- Liem H Nguyen
Pollack Foundation
- Hao Zhu
National Institutes of Health (1K08CA157727)
- Hao Zhu
National Cancer Institute (1R01CA190525)
- Hao Zhu
Burroughs Wellcome Fund
- Hao Zhu
CPRIT New Investigator Award (R1209)
- Hao Zhu
CPRIT Early Translation Grant (DP150077)
- Hao Zhu
National Institutes of Health (DA023701)
- Amelia J Eisch
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Revised ethics statement: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patient/parents.
Human subjects: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patients.
Copyright
© 2017, Celen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,235
- views
-
- 806
- downloads
-
- 90
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.
-
- Genetics and Genomics
- Neuroscience
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.