Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment

  1. Cemre Celen
  2. Jen-Chieh Chuang
  3. Xin Luo
  4. Nadine Nijem
  5. Angela K Walker
  6. Fei Chen
  7. Shuyuan Zhang
  8. Andrew Seungjae Chung
  9. Liem H Nguyen
  10. Ibrahim Nassour
  11. Albert Budhipramono
  12. Xuxu Sun
  13. Levinus A Bok
  14. Meriel McEntagart
  15. Evelien Gevers
  16. Shari G Birnbaum
  17. Amelia J Eisch
  18. Craig M Powell
  19. Woo-Ping Ge
  20. Gijs WE Santen
  21. Maria Chahrour
  22. Hao Zhu  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. University of Texas Southwestern Medical Center, United States
  3. Máxima Medical Center, Netherlands
  4. St George's University Hospitals, NHS Foundation Trust, United Kingdom
  5. Queen Mary University of London, United Kingdom
  6. University of Pennsylvania, United States
  7. Leiden University Medical Center, Netherlands

Abstract

Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (1), autism spectrum disorder (2), intellectual disability (3), and corpus callosum agenesis (4). In addition, ARID1B is the most common cause of Coffin-Siris Syndrome, a developmental delay syndrome characterized by some of the above abnormalities (5-7). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth Hormone Releasing Hormone (GHRH) and Growth Hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Cemre Celen

    The Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jen-Chieh Chuang

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xin Luo

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadine Nijem

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela K Walker

    Department of Neurology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fei Chen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shuyuan Zhang

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Seungjae Chung

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Liem H Nguyen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ibrahim Nassour

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Albert Budhipramono

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Xuxu Sun

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Levinus A Bok

    Department of Pediatrics, Máxima Medical Center, Veldhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Meriel McEntagart

    Medical Genetics, St George's University Hospitals, NHS Foundation Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Evelien Gevers

    William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Shari G Birnbaum

    Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Amelia J Eisch

    Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Craig M Powell

    Department of Neurology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Woo-Ping Ge

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Gijs WE Santen

    Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Maria Chahrour

    Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Hao Zhu

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Hao.Zhu@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8417-9698

Funding

Hamon Center for Regenerative Science and Medicine

  • Cemre Celen
  • Xuxu Sun

National Institutes of Health (DA023555)

  • Amelia J Eisch

National Institutes of Health (MH107945)

  • Amelia J Eisch

Postdoctoral Institutional training grant (NIDA T32-DA007290)

  • Angela K Walker

HHMI International Fellowship

  • Liem H Nguyen

Pollack Foundation

  • Hao Zhu

National Institutes of Health (1K08CA157727)

  • Hao Zhu

National Cancer Institute (1R01CA190525)

  • Hao Zhu

Burroughs Wellcome Fund

  • Hao Zhu

CPRIT New Investigator Award (R1209)

  • Hao Zhu

CPRIT Early Translation Grant (DP150077)

  • Hao Zhu

National Institutes of Health (DA023701)

  • Amelia J Eisch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Revised ethics statement: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patient/parents.

Human subjects: All animal procedures were based on animal care guidelines approved by the Institutional. Animal Care and Use Committee at University of Texas Southwestern Medical Center (UTSW). Animal protocol number is 2015-101118. Patient data included in the article is non-identifiable data, and hence does not require approval from the patients.

Copyright

© 2017, Celen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,219
    views
  • 806
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cemre Celen
  2. Jen-Chieh Chuang
  3. Xin Luo
  4. Nadine Nijem
  5. Angela K Walker
  6. Fei Chen
  7. Shuyuan Zhang
  8. Andrew Seungjae Chung
  9. Liem H Nguyen
  10. Ibrahim Nassour
  11. Albert Budhipramono
  12. Xuxu Sun
  13. Levinus A Bok
  14. Meriel McEntagart
  15. Evelien Gevers
  16. Shari G Birnbaum
  17. Amelia J Eisch
  18. Craig M Powell
  19. Woo-Ping Ge
  20. Gijs WE Santen
  21. Maria Chahrour
  22. Hao Zhu
(2017)
Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment
eLife 6:e25730.
https://doi.org/10.7554/eLife.25730

Share this article

https://doi.org/10.7554/eLife.25730

Further reading

    1. Neuroscience
    Lotfi Ferhat, Rabia Soussi ... Michel Khrestchatisky
    Research Article

    Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate ‘vectorized’ forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.

    1. Neuroscience
    Pál Barzó, Ildikó Szöts ... Gábor Tamás
    Research Article

    The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 y of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition, and age-related neurodegenerative diseases.