Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds

  1. Kirill Tokarev  Is a corresponding author
  2. Julia Hyland Bruno
  3. Iva Ljubičić
  4. Paresh J Kothari
  5. Santosh A Helekar
  6. Ofer Tchernichovski
  7. Henning U Voss
  1. Hunter College, City University of New York, United States
  2. Weill Cornell Medicine, United States
  3. Houston Methodist Research Institute, United States

Abstract

In many songbird species, males sing to attract females and repel rivals. How can gregarious, non-territorial songbirds such as zebra finches, where females have access to numerous males, sustain monogamy? We found that the dopaminergic reward circuitry of zebra finches can simultaneously promote social cohesion and breeding boundaries. Surprisingly, in unmated males but not in females, striatal dopamine neurotransmission was elevated after hearing songs. Behaviorally too, unmated males but not females persistently exchanged mild punishments in return for songs. Song reinforcement diminished when dopamine receptors were blocked. In females, we observed song reinforcement exclusively to the mate’s song, although their striatal dopamine neurotransmission was only slightly elevated. These findings suggest that song-triggered dopaminergic activation serves a dual function in social songbirds: as low-threshold social reinforcement in males and as ultra-selective sexual reinforcement in females. Co-evolution of sexually dimorphic reinforcement systems can explain the coexistence of gregariousness and monogamy.

Article and author information

Author details

  1. Kirill Tokarev

    Deaprtment of Psychology, Hunter College, City University of New York, New York, United States
    For correspondence
    kt66@hunter.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2129-1324
  2. Julia Hyland Bruno

    Department of Psychology, Hunter College, City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Iva Ljubičić

    Department of Psychology, Hunter College, City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paresh J Kothari

    Department of Radiology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1590-8682
  5. Santosh A Helekar

    Department of Neurology, Houston Methodist Research Institute, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ofer Tchernichovski

    Department of Psychology, Hunter College, City University of New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Henning U Voss

    Department of Radiology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1261872)

  • Kirill Tokarev
  • Ofer Tchernichovski

National Science Foundation (956306)

  • Henning U Voss

National Science Foundation (1065678)

  • Santosh A Helekar

National Institutes of Health (DC04722-17)

  • Kirill Tokarev
  • Ofer Tchernichovski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Ethics

Animal experimentation: This study was conducted in accordance with the guidelines of the US National Institutes of Health and was approved by the Institutional Animal Care and Use Committees of Hunter College of the City University of New York (protocol 'OT imaging 10/18-01') and Weill Cornell Medical College (protocol #2010-0003).

Version history

  1. Received: February 7, 2017
  2. Accepted: August 8, 2017
  3. Accepted Manuscript published: August 11, 2017 (version 1)
  4. Version of Record published: September 5, 2017 (version 2)
  5. Version of Record updated: January 25, 2018 (version 3)

Copyright

© 2017, Tokarev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,615
    Page views
  • 365
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kirill Tokarev
  2. Julia Hyland Bruno
  3. Iva Ljubičić
  4. Paresh J Kothari
  5. Santosh A Helekar
  6. Ofer Tchernichovski
  7. Henning U Voss
(2017)
Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds
eLife 6:e25819.
https://doi.org/10.7554/eLife.25819

Share this article

https://doi.org/10.7554/eLife.25819

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.