Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters

  1. Mary Hongying Cheng
  2. Delany Torres-Salazar
  3. Aneysis D Gonzalez-Suarez
  4. Susan G Amara
  5. Ivet Bahar  Is a corresponding author
  1. School of Medicine, University of Pittsburgh, United States
  2. National Institutes of Health, United States

Abstract

Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions.

Article and author information

Author details

  1. Mary Hongying Cheng

    Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Delany Torres-Salazar

    Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aneysis D Gonzalez-Suarez

    Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Susan G Amara

    Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivet Bahar

    Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    bahar@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9959-4176

Funding

NIH (P41GM103712)

  • Ivet Bahar

NIH (P30DA035778)

  • Ivet Bahar

NIH (5R01GM099738)

  • Ivet Bahar

NIH (MH002946)

  • Susan G Amara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,530
    views
  • 318
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mary Hongying Cheng
  2. Delany Torres-Salazar
  3. Aneysis D Gonzalez-Suarez
  4. Susan G Amara
  5. Ivet Bahar
(2017)
Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters
eLife 6:e25850.
https://doi.org/10.7554/eLife.25850

Share this article

https://doi.org/10.7554/eLife.25850

Further reading

    1. Structural Biology and Molecular Biophysics
    Dipti Ranjan Lenka, Shakti Virendra Dahe ... Atul Kumar
    Research Article

    Loss-of-function Parkin mutations lead to early-onset of Parkinson’s disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in trans. Furthermore, we show that the activator element (ACT) of Parkin is required to maintain the enzyme kinetics, and the removal of ACT slows the enzyme catalysis. We also demonstrate that ACT can activate Parkin in trans but less efficiently than when present in the cis molecule. Furthermore, the crystal structure reveals a donor ubiquitin binding pocket in the linker connecting REP and RING2, which plays a crucial role in Parkin activity.

    1. Structural Biology and Molecular Biophysics
    Po-Lin Chiu, Juan D Orjuela ... Thomas Walz
    Research Article

    Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein–protein contacts but also due to increased lipid–protein complementarity. Since each tetramer interacts with four such ‘glue’ cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.