Enhanced FIB-SEM systems for large-volume 3D imaging

  1. C Shan Xu  Is a corresponding author
  2. Kenneth J Hayworth
  3. Zhiyuan Lu
  4. Patricia Grob
  5. Ahmed M Hassan
  6. José G García-Cerdán
  7. Krishna K Niyogi
  8. Eva Nogales
  9. Richard J Weinberg
  10. Harald F Hess
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States
  3. Howard Hughes Medical Institute, University of California, Berekely, United States
  4. University of North Carolina, United States

Abstract

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 106 µm3. These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.

Article and author information

Author details

  1. C Shan Xu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    xuc@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8564-7836
  2. Kenneth J Hayworth

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhiyuan Lu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patricia Grob

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ahmed M Hassan

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. José G García-Cerdán

    Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berekely, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Krishna K Niyogi

    Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berekely, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eva Nogales

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9816-3681
  9. Richard J Weinberg

    Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Harald F Hess

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Howard Hughes Medical Institute

  • C Shan Xu
  • Kenneth J Hayworth
  • Zhiyuan Lu
  • Krishna K Niyogi
  • Eva Nogales
  • Harald F Hess

U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (SISGRKN)

  • Krishna K Niyogi
  • Eva Nogales

Gordon and Betty Moore Foundation (GBMF3070)

  • Krishna K Niyogi

NIH (R01 NS-039444)

  • Richard J Weinberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the vertebrate animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13-258.0) of UNC. UNC's PHS Assurance number is D16-00256 (A3410-01); the AALAC Unit number is 000329.

Copyright

© 2017, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 24,717
    views
  • 2,502
    downloads
  • 296
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. C Shan Xu
  2. Kenneth J Hayworth
  3. Zhiyuan Lu
  4. Patricia Grob
  5. Ahmed M Hassan
  6. José G García-Cerdán
  7. Krishna K Niyogi
  8. Eva Nogales
  9. Richard J Weinberg
  10. Harald F Hess
(2017)
Enhanced FIB-SEM systems for large-volume 3D imaging
eLife 6:e25916.
https://doi.org/10.7554/eLife.25916

Share this article

https://doi.org/10.7554/eLife.25916

Further reading

    1. Cell Biology
    Roberto Notario Manzano, Thibault Chaze ... Christel Brou
    Research Article

    Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.

    1. Cell Biology
    Ming Zhang, Guangyi Du ... Wei Chen
    Research Article

    Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.