Enhanced FIB-SEM systems for large-volume 3D imaging

  1. C Shan Xu  Is a corresponding author
  2. Kenneth J Hayworth
  3. Zhiyuan Lu
  4. Patricia Grob
  5. Ahmed M Hassan
  6. José G García-Cerdán
  7. Krishna K Niyogi
  8. Eva Nogales
  9. Richard J Weinberg
  10. Harald F Hess
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States
  3. Howard Hughes Medical Institute, University of California, Berekely, United States
  4. University of North Carolina, United States

Abstract

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 106 µm3. These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.

Article and author information

Author details

  1. C Shan Xu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    xuc@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8564-7836
  2. Kenneth J Hayworth

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zhiyuan Lu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patricia Grob

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ahmed M Hassan

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. José G García-Cerdán

    Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berekely, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Krishna K Niyogi

    Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berekely, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eva Nogales

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9816-3681
  9. Richard J Weinberg

    Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Harald F Hess

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Howard Hughes Medical Institute

  • C Shan Xu
  • Kenneth J Hayworth
  • Zhiyuan Lu
  • Krishna K Niyogi
  • Eva Nogales
  • Harald F Hess

U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division (SISGRKN)

  • Krishna K Niyogi
  • Eva Nogales

Gordon and Betty Moore Foundation (GBMF3070)

  • Krishna K Niyogi

NIH (R01 NS-039444)

  • Richard J Weinberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the vertebrate animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13-258.0) of UNC. UNC's PHS Assurance number is D16-00256 (A3410-01); the AALAC Unit number is 000329.

Copyright

© 2017, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 26,163
    views
  • 2,655
    downloads
  • 341
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.25916

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.