Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development

  1. Max van Lessen
  2. Shannon Shibata-Germanos
  3. Andreas van Impel
  4. Thomas A Hawkins
  5. Jason Rihel
  6. Stefan Schulte-Merker  Is a corresponding author
  1. Westfälische Wilhelms-Universität Münster, Germany
  2. University College London, United Kingdom

Abstract

The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain.

Article and author information

Author details

  1. Max van Lessen

    Institute of Cardiovascular Organogenesis and Regeneration, Westfälische Wilhelms-Universität Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Shannon Shibata-Germanos

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Andreas van Impel

    Institute of Cardiovascular Organogenesis and Regeneration, Westfälische Wilhelms-Universität Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas A Hawkins

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jason Rihel

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stefan Schulte-Merker

    Institute for Cardiovascular Organogenesis and Regeneration, Westfälische Wilhelms-Universität Münster, Muenster, Germany
    For correspondence
    schultes@ukmuenster.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3617-8807

Funding

Deutsche Forschungsgemeinschaft (FOR2325)

  • Stefan Schulte-Merker

Deutsche Forschungsgemeinschaft (CiM 1003)

  • Max van Lessen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were conducted under project licence awarded to J.R. from the UK Home Office (Permit Number: 70/7612), according to the UK Animals (Scientific Procedures) Act 1986.

Copyright

© 2017, van Lessen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,651
    views
  • 895
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max van Lessen
  2. Shannon Shibata-Germanos
  3. Andreas van Impel
  4. Thomas A Hawkins
  5. Jason Rihel
  6. Stefan Schulte-Merker
(2017)
Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development
eLife 6:e25932.
https://doi.org/10.7554/eLife.25932

Share this article

https://doi.org/10.7554/eLife.25932

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.