Rapid short-term reorganization in the language network

  1. Gesa Hartwigsen  Is a corresponding author
  2. Danilo Bzdok
  3. Maren Klein
  4. Max Wawrzyniak
  5. Anika Stockert
  6. Katrin Wrede
  7. Joseph Classen
  8. Dorothee Saur
  1. Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
  2. RWTH Aachen, Germany
  3. University of Leipzig, Germany

Abstract

The adaptive potential of the language network to compensate for lesions remains elusive. We show that perturbation of a semantic region in the healthy brain induced suppression of activity in a large semantic network and upregulation of neighbouring phonological areas. After perturbation, the disrupted area increased its inhibitory influence on another semantic key node. The inhibitory influence predicted the individual delay in response speed, indicating that inhibition at remote nodes is functionally relevant. Individual disruption predicted the upregulation of semantic activity in phonological regions. In contrast, perturbation over a phonological region suppressed activity in the network and disrupted behaviour without inducing upregulation. The beneficial contribution of a neighbouring network might thus depend on the level of functional disruption and may be interpreted to reflect a differential compensatory potential of distinct language networks. These results might reveal generic mechanisms of plasticity in cognitive networks and inform models of language reorganization.

Article and author information

Author details

  1. Gesa Hartwigsen

    Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
    For correspondence
    hartwigsen@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8084-1330
  2. Danilo Bzdok

    Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3466-6620
  3. Maren Klein

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Max Wawrzyniak

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anika Stockert

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Katrin Wrede

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Joseph Classen

    Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dorothee Saur

    Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (HA-6314-1-1)

  • Gesa Hartwigsen

James F. MacDonnell Foundation

  • Dorothee Saur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written informed consent was obtained before the experiment.The study was performed according to the guidelines of the Declaration of Helsinki and approved by the local ethics committee (Medical Faculty at the University of Leipzig).

Copyright

© 2017, Hartwigsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,831
    views
  • 411
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gesa Hartwigsen
  2. Danilo Bzdok
  3. Maren Klein
  4. Max Wawrzyniak
  5. Anika Stockert
  6. Katrin Wrede
  7. Joseph Classen
  8. Dorothee Saur
(2017)
Rapid short-term reorganization in the language network
eLife 6:e25964.
https://doi.org/10.7554/eLife.25964

Share this article

https://doi.org/10.7554/eLife.25964

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article Updated

    Most nervous systems combine both transmitter-mediated and direct cell–cell communication, known as ‘chemical’ and ‘electrical’ synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a ‘gap junction’ (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact’s surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.