Rapid short-term reorganization in the language network

  1. Gesa Hartwigsen  Is a corresponding author
  2. Danilo Bzdok
  3. Maren Klein
  4. Max Wawrzyniak
  5. Anika Stockert
  6. Katrin Wrede
  7. Joseph Classen
  8. Dorothee Saur
  1. Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
  2. RWTH Aachen, Germany
  3. University of Leipzig, Germany

Abstract

The adaptive potential of the language network to compensate for lesions remains elusive. We show that perturbation of a semantic region in the healthy brain induced suppression of activity in a large semantic network and upregulation of neighbouring phonological areas. After perturbation, the disrupted area increased its inhibitory influence on another semantic key node. The inhibitory influence predicted the individual delay in response speed, indicating that inhibition at remote nodes is functionally relevant. Individual disruption predicted the upregulation of semantic activity in phonological regions. In contrast, perturbation over a phonological region suppressed activity in the network and disrupted behaviour without inducing upregulation. The beneficial contribution of a neighbouring network might thus depend on the level of functional disruption and may be interpreted to reflect a differential compensatory potential of distinct language networks. These results might reveal generic mechanisms of plasticity in cognitive networks and inform models of language reorganization.

Article and author information

Author details

  1. Gesa Hartwigsen

    Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
    For correspondence
    hartwigsen@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8084-1330
  2. Danilo Bzdok

    Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3466-6620
  3. Maren Klein

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Max Wawrzyniak

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anika Stockert

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Katrin Wrede

    Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Joseph Classen

    Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dorothee Saur

    Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (HA-6314-1-1)

  • Gesa Hartwigsen

James F. MacDonnell Foundation

  • Dorothee Saur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Ethics

Human subjects: Written informed consent was obtained before the experiment.The study was performed according to the guidelines of the Declaration of Helsinki and approved by the local ethics committee (Medical Faculty at the University of Leipzig).

Version history

  1. Received: February 13, 2017
  2. Accepted: May 23, 2017
  3. Accepted Manuscript published: May 24, 2017 (version 1)
  4. Version of Record published: June 15, 2017 (version 2)

Copyright

© 2017, Hartwigsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,796
    views
  • 401
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gesa Hartwigsen
  2. Danilo Bzdok
  3. Maren Klein
  4. Max Wawrzyniak
  5. Anika Stockert
  6. Katrin Wrede
  7. Joseph Classen
  8. Dorothee Saur
(2017)
Rapid short-term reorganization in the language network
eLife 6:e25964.
https://doi.org/10.7554/eLife.25964

Share this article

https://doi.org/10.7554/eLife.25964

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.