microCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system

  1. Matthew Hur
  2. Charlotte A Gistelinck
  3. Philippe Huber
  4. Jane Lee
  5. Marjorie H Thompson
  6. Adrian T Monstad-Rios
  7. Claire J Watson
  8. Sarah K McMenamin
  9. Andy Willaert
  10. David M Parichy
  11. Paul Coucke
  12. Ronald Y Kwon  Is a corresponding author
  1. University of Washington, United States
  2. Ghent University, Belgium
  3. Boston College, United States
  4. University of Virginia, United States

Abstract

Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Matthew Hur

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlotte A Gistelinck

    Center for Medical Genetics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Philippe Huber

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jane Lee

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marjorie H Thompson

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Adrian T Monstad-Rios

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Claire J Watson

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah K McMenamin

    Department of Biology, Boston College, Chestnut Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andy Willaert

    Center for Medical Genetics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. David M Parichy

    Department of Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Coucke

    Center for Medical Genetics, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Ronald Y Kwon

    Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    For correspondence
    ronkwon@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9760-3761

Funding

University of Washington (A88052)

  • Ronald Y Kwon

National Institutes of Health (AR066061)

  • Ronald Y Kwon

Belgian Science Policy Office Interuniversity Attraction Poles Program (IAP P7/43-BeMGI)

  • Paul Coucke

National Institutes of Health (GM105874)

  • Sarah K McMenamin

National Institutes of Health (HD091634)

  • Sarah K McMenamin

National Institutes of Health (GM11233)

  • David M Parichy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M White, Memorial Sloan Kettering Cancer Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All studies were performed on an approved protocol (#4306-01) in accordance with the University of Washington Institutional Animal Care and Use Committee (IACUC).

Version history

  1. Received: February 15, 2017
  2. Accepted: August 21, 2017
  3. Accepted Manuscript published: September 8, 2017 (version 1)
  4. Version of Record published: September 20, 2017 (version 2)

Copyright

© 2017, Hur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,908
    views
  • 383
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Hur
  2. Charlotte A Gistelinck
  3. Philippe Huber
  4. Jane Lee
  5. Marjorie H Thompson
  6. Adrian T Monstad-Rios
  7. Claire J Watson
  8. Sarah K McMenamin
  9. Andy Willaert
  10. David M Parichy
  11. Paul Coucke
  12. Ronald Y Kwon
(2017)
microCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system
eLife 6:e26014.
https://doi.org/10.7554/eLife.26014

Share this article

https://doi.org/10.7554/eLife.26014

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.