1. Cell Biology
Download icon

Metaphase chromosome structure is dynamically maintained by Condensin I-directed DNA (de)catenation

  1. Ewa Piskadlo
  2. Alexandra Tavares
  3. Raquel A Oliveira  Is a corresponding author
  1. Instituto Gulbenkian de Ciência, Portugal
Research Article
  • Cited 28
  • Views 3,661
  • Annotations
Cite this article as: eLife 2017;6:e26120 doi: 10.7554/eLife.26120

Abstract

Mitotic chromosome assembly remains a big mystery in biology. Condensin complexes are pivotal for chromosome architecture yet how they shape mitotic chromatin remains unknown. Using acute inactivation approaches and live-cell imaging in Drosophila embryos, we dissect the role of condensin I in the maintenance of mitotic chromosome structure with unprecedented temporal resolution. Removal of condensin I from pre-established chromosomes results in rapid disassembly of centromeric regions while most chromatin mass undergoes hyper-compaction. This is accompanied by drastic changes in the degree of sister chromatid intertwines. While wild-type metaphase chromosomes display residual levels of catenations, upon timely removal of condensin I, chromosomes present high levels of de novo Topoisomerase II (TopoII)-dependent re-entanglements, and complete failure in chromosome segregation. TopoII is thus capable of re-intertwining previously separated DNA molecules and condensin I continuously required to counteract this erroneous activity. We propose that maintenance of chromosome resolution is a highly dynamic bidirectional process.

Article and author information

Author details

  1. Ewa Piskadlo

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Tavares

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Raquel A Oliveira

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    For correspondence
    rcoliveira@igc.gulbenkian.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8293-8603

Funding

Fundação para a Ciência e a Tecnologia (SRFH/BD/52172/2013)

  • Ewa Piskadlo

European Commission (MCCIG321883/CCC)

  • Raquel A Oliveira

European Molecular Biology Organization (IG2778)

  • Raquel A Oliveira

Fundação para a Ciência e a Tecnologia (IF/00851/2012/CP0185/CT0004 WP1)

  • Raquel A Oliveira

European Commission (ERC-2014-STG-638917-ChromoCellDev)

  • Raquel A Oliveira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Sherratt, University of Oxford, United Kingdom

Publication history

  1. Received: February 18, 2017
  2. Accepted: May 5, 2017
  3. Accepted Manuscript published: May 6, 2017 (version 1)
  4. Version of Record published: May 31, 2017 (version 2)

Copyright

© 2017, Piskadlo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,661
    Page views
  • 602
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Haibin Yang et al.
    Research Article Updated

    Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Qiuying Liu et al.
    Research Article Updated

    The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.