Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex

  1. Benjamin Roland
  2. Thomas Deneux
  3. Kevin M Franks
  4. Brice Bathellier  Is a corresponding author
  5. Alexander Fleischmann  Is a corresponding author
  1. Collège de France, France
  2. Centre National de la Recherche Scientifique, UPR 3293, France
  3. Duke University, United States
  4. Centre National de la Recherche Scientifique, France

Abstract

Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex.

Article and author information

Author details

  1. Benjamin Roland

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Deneux

    Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin M Franks

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6386-9518
  4. Brice Bathellier

    Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
    For correspondence
    bathellier@unic.cnrs-gif.fr
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Fleischmann

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    For correspondence
    alexander.fleischmann@college-de-france.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7956-9096

Funding

Marie Curie International Reintegration Grant (IRG 276869)

  • Alexander Fleischmann

Fondation pour la Recherche Médicale (AJE201106)

  • Alexander Fleischmann

European Molecular Biology Organization (ASTF 395 - 2014)

  • Benjamin Roland

LabEx Memolife

  • Benjamin Roland

National Institute on Deafness and Other Communication Disorders (DC009839 and DC015525)

  • Kevin M Franks

Agence Nationale de la Recherche (SENSEMAKER)

  • Brice Bathellier

Human Frontier Science Program (CDA-0064-2015)

  • Brice Bathellier

Marie Curie Program (CIG 334581)

  • Brice Bathellier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with French National and INSERM animal care and use committee guidelines (#B750512/00615.02). All surgery was performed under ketamine/xylazine anesthesia.

Copyright

© 2017, Roland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,418
    views
  • 1,121
    downloads
  • 119
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Roland
  2. Thomas Deneux
  3. Kevin M Franks
  4. Brice Bathellier
  5. Alexander Fleischmann
(2017)
Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex
eLife 6:e26337.
https://doi.org/10.7554/eLife.26337

Share this article

https://doi.org/10.7554/eLife.26337

Further reading

    1. Neuroscience
    Kelly A Bennion, Jade Phong ... James W Antony
    Research Article

    Over the past century of memory research, the interplay between initial and later-learned information in determining long-term memory retention has been of central interest. A likely factor for determining whether initial and later memories interfere with or strengthen each other is semantic relatedness. Relatedness has been shown to retroactively boost initial memory and increase the interdependence between earlier and more recent experiences in memory. Here, we investigated the converse relationship of how relatedness proactively affects later memory for paired associates. In five experiments (N=1000 total), we varied the relatedness between initial and later cues, initial and later targets, or both. Across experiments and conditions, relatedness profoundly benefited later-learned memories – in some conditions, low relatedness reliably produced proactive interference (versus a control condition) while high relatedness produced proactive facilitation within the same experiment. Additionally, relatedness also accelerated learning and increased interdependence between initial and later-learned pairs. In sum, we demonstrate the robust effects of relatedness in scaffolding memory for recently learned information and creating strong integrative links with prior experiences.

    1. Neuroscience
    Csaba Dávid, Kristóf Giber ... Laszlo Acsady
    Tools and Resources

    Unsupervised segmentation in biological and non-biological images is only partially resolved. Segmentation either requires arbitrary thresholds or large teaching datasets. Here, we propose a spatial autocorrelation method based on Local Moran’s I coefficient to differentiate signal, background, and noise in any type of image. The method, originally described for geoinformatics, does not require a predefined intensity threshold or teaching algorithm for image segmentation and allows quantitative comparison of samples obtained in different conditions. It utilizes relative intensity as well as spatial information of neighboring elements to select spatially contiguous groups of pixels. We demonstrate that Moran’s method outperforms threshold-based method in both artificially generated as well as in natural images especially when background noise is substantial. This superior performance can be attributed to the exclusion of false positive pixels resulting from isolated, high intensity pixels in high noise conditions. To test the method’s power in real situation, we used high power confocal images of the somatosensory thalamus immunostained for Kv4.2 and Kv4.3 (A-type) voltage-gated potassium channels in mice. Moran’s method identified high-intensity Kv4.2 and Kv4.3 ion channel clusters in the thalamic neuropil. Spatial distribution of these clusters displayed strong correlation with large sensory axon terminals of subcortical origin. The unique association of the special presynaptic terminals and a postsynaptic voltage-gated ion channel cluster was confirmed with electron microscopy. These data demonstrate that Moran’s method is a rapid, simple image segmentation method optimal for variable and high noise conditions.