Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex

  1. Benjamin Roland
  2. Thomas Deneux
  3. Kevin M Franks
  4. Brice Bathellier  Is a corresponding author
  5. Alexander Fleischmann  Is a corresponding author
  1. Collège de France, France
  2. Centre National de la Recherche Scientifique, UPR 3293, France
  3. Duke University, United States
  4. Centre National de la Recherche Scientifique, France

Abstract

Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex.

Article and author information

Author details

  1. Benjamin Roland

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Deneux

    Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Kevin M Franks

    Department of Neurobiology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6386-9518
  4. Brice Bathellier

    Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
    For correspondence
    bathellier@unic.cnrs-gif.fr
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Fleischmann

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    For correspondence
    alexander.fleischmann@college-de-france.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7956-9096

Funding

Marie Curie International Reintegration Grant (IRG 276869)

  • Alexander Fleischmann

Fondation pour la Recherche Médicale (AJE201106)

  • Alexander Fleischmann

European Molecular Biology Organization (ASTF 395 - 2014)

  • Benjamin Roland

LabEx Memolife

  • Benjamin Roland

National Institute on Deafness and Other Communication Disorders (DC009839 and DC015525)

  • Kevin M Franks

Agence Nationale de la Recherche (SENSEMAKER)

  • Brice Bathellier

Human Frontier Science Program (CDA-0064-2015)

  • Brice Bathellier

Marie Curie Program (CIG 334581)

  • Brice Bathellier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with French National and INSERM animal care and use committee guidelines (#B750512/00615.02). All surgery was performed under ketamine/xylazine anesthesia.

Copyright

© 2017, Roland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,562
    views
  • 1,135
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Roland
  2. Thomas Deneux
  3. Kevin M Franks
  4. Brice Bathellier
  5. Alexander Fleischmann
(2017)
Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex
eLife 6:e26337.
https://doi.org/10.7554/eLife.26337

Share this article

https://doi.org/10.7554/eLife.26337

Further reading

    1. Neuroscience
    Patricia E Phelps, Sung Min Ha ... Xia Yang
    Research Article

    Olfactory ensheathing cells (OECs) are unique glial cells found in both central and peripheral nervous systems where they support continuous axonal outgrowth of olfactory sensory neurons to their targets. Previously, we reported that following severe spinal cord injury, OECs transplanted near the injury site modify the inhibitory glial scar and facilitate axon regeneration past the scar border and into the lesion. To better understand the mechanisms underlying the reparative properties of OECs, we used single-cell RNA-sequencing of OECs from adult rats to study their gene expression programs. Our analyses revealed five diverse OEC subtypes, each expressing novel marker genes and pathways indicative of progenitor, axonal regeneration, secreted molecules, or microglia-like functions. We found substantial overlap of OEC genes with those of Schwann cells, but also with microglia, astrocytes, and oligodendrocytes. We confirmed established markers on cultured OECs, and localized select top genes of OEC subtypes in olfactory bulb tissue. We also show that OECs secrete Reelin and Connective tissue growth factor, extracellular matrix molecules which are important for neural repair and axonal outgrowth. Our results support that OECs are a unique hybrid glia, some with progenitor characteristics, and that their gene expression patterns indicate functions related to wound healing, injury repair, and axonal regeneration.

    1. Neuroscience
    Zachary Fournier, Leandro M Alonso, Eve Marder
    Research Article

    Circuit function results from both intrinsic conductances of network neurons and the synaptic conductances that connect them. In models of neural circuits, different combinations of maximal conductances can give rise to similar activity. We compared the robustness of a neural circuit to changes in their intrinsic versus synaptic conductances. To address this, we performed a sensitivity analysis on a population of conductance-based models of the pyloric network from the crustacean stomatogastric ganglion (STG). The model network consists of three neurons with nine currents: a sodium current (Na), three potassium currents (Kd, KCa, KA), two calcium currents (CaS and CaT), a hyperpolarization-activated current (H), a non-voltage-gated leak current (leak), and a neuromodulatory current (MI). The model cells are connected by seven synapses of two types, glutamatergic and cholinergic. We produced one hundred models of the pyloric network that displayed similar activities with values of maximal conductances distributed over wide ranges. We evaluated the robustness of each model to changes in their maximal conductances. We found that individual models have different sensitivities to changes in their maximal conductances, both in their intrinsic and synaptic conductances. As expected, the models become less robust as the extent of the changes increases. Despite quantitative differences in their robustness, we found that in all cases, the model networks are more sensitive to the perturbation of their intrinsic conductances than their synaptic conductances.