1. Neuroscience
Download icon

Object Recognition: Do rats see like we see?

  1. Nicole C Rust  Is a corresponding author
  1. University of Pennsylvania, United States
Insight
  • Cited 0
  • Views 1,730
  • Annotations
Cite this article as: eLife 2017;6:e26401 doi: 10.7554/eLife.26401

Abstract

Like primates, the rat brain areas thought to be involved in visual object recognition are arranged in a hierarchy.

Main text

In our eyes, cells called photoreceptors convert the world around us into a pixel-like representation. Our brains must then reorganize this into a representation that reflects the identities of the objects we are looking at. The same object can be represented by very different pixel patterns, depending on its distance from us, the viewing angle and the lighting conditions. Conversely, different objects can be represented by pixel patterns that are similar. This is what makes object recognition a tremendously challenging problem for our brains to solve, and we do not fully understand how our brains manage to recognize objects.

Nonhuman primates (such as rhesus monkeys) are routinely used to study object recognition because their brains are similar to ours in many ways. However, there are advantages to working with mice and rats, including access to an array of modern biotechnological tools that have been optimized for these species. These tools include sophisticated ways to measure neural activity (Svoboda and Yasuda, 2006), to manipulate neural activity (Fenno et al., 2011), and to map how neurons are connected together within and between brain areas (Oh et al., 2014).

Skepticism that rodents could be used to gain insight into object recognition has largely been targeted at the ways in which rodent visual systems deviate from our own. For example, the retinae of mice and rats are specialized for seeing in the dark, and they lack a region called the fovea that allows humans to see objects in great detail at the center of the gaze. The visual cortex is also organized differently in primates and rodents with regard to how neurons with similar preferences for visual stimuli are clustered together within each brain area, and a much smaller fraction of the rodent cortex is devoted to visual processing. In light of all of these differences, can we really learn much about how our brains recognize objects by studying how rodents see?

In an earlier study, Davide Zoccolan and colleagues presented behavioral evidence that rats are capable of identifying objects under variations in viewing conditions (Zoccolan et al., 2009). Now, in eLife, Zoccolan and co-workers at SISSA in Trieste, the Istituto Italiano di Tecnologia and Harvard Medical School – including Sina Tafazoli and Houman Safaai as joint first authors – present evidence that this behavior is supported by four visual areas of the brain that are arranged in a functional hierarchy (Tafazoli et al., 2017). This is analogous to how object processing happens in the primate brain (DiCarlo et al., 2012).

Researchers had previously relied on anatomical evidence to argue that visual brain areas in rats are organized in a hierarchical fashion (Coogan and Burkhalter, 1993). Tafazoli et al. recorded the activity of four of these areas – termed V1, LM, LI and LL – in response to different objects as they systematically changed a number of variables (such as the position, size and luminance of each object). With this data, they quantified how much information each brain area reflected about the identity of the object, as well as how that information was formatted.

A key insight came from analyzing the degree to which changes in the neural responses to different objects could be attributed to differences in object luminance as opposed to object shape. Compared to the other brain areas, the firing rate of the neurons in V1 (the first brain area in the hierarchy) depended more strongly on the amount of luminance within the region of the visual field that each neuron was sensitive to. Moving through the hierarchy, an increasingly large proportion of the responses of the neurons reflected information about the shape of the object. At the same time, there was a systematic increase in the degree to which information about object identity was formatted in a manner that would make it easy for higher brain areas to access this information (DiCarlo and Cox, 2007).

In the face of considerable evidence that object processing in rats and primates is different, Tafazoli et al. have uncovered a compelling similarity. By design, their study has strong parallels with the studies that established a hierarchy for object processing in the primate brain, and their results suggest that rats and primates may perform object recognition in broadly similar ways. Future work will be required to determine the degree to which the nuts-and-bolts of object processing are in fact the same between the species.

References

    1. Coogan TA
    2. Burkhalter A
    (1993)
    Hierarchical organization of areas in rat visual cortex
    Journal of Neuroscience 13:3749–3772.

Article and author information

Author details

  1. Nicole C Rust

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    nrust@sas.upenn.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7820-6696

Publication history

  1. Version of Record published: April 12, 2017 (version 1)

Copyright

© 2017, Rust

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,730
    Page views
  • 189
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Sayali V Gore et al.
    Research Article Updated

    Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here, we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.

    1. Neuroscience
    Joshua B Burt et al.
    Research Advance

    Psychoactive drugs can transiently perturb brain physiology while preserving brain structure. The role of physiological state in shaping neural function can therefore be investigated through neuroimaging of pharmacologically induced effects. Previously, using pharmacological neuroimaging, we found that neural and experiential effects of lysergic acid diethylamide (LSD) are attributable to agonism of the serotonin-2A receptor (Preller et al., 2018). Here, we integrate brain-wide transcriptomics with biophysically based circuit modeling to simulate acute neuromodulatory effects of LSD on human cortical large-scale spatiotemporal dynamics. Our model captures the inter-areal topography of LSD-induced changes in cortical blood oxygen level-dependent (BOLD) functional connectivity. These findings suggest that serotonin-2A-mediated modulation of pyramidal-neuronal gain is a circuit mechanism through which LSD alters cortical functional topography. Individual-subject model fitting captures patterns of individual neural differences in pharmacological response related to altered states of consciousness. This work establishes a framework for linking molecular-level manipulations to systems-level functional alterations, with implications for precision medicine.