Object Recognition: Do rats see like we see?

Like primates, the rat brain areas thought to be involved in visual object recognition are arranged in a hierarchy.
  1. Nicole C Rust  Is a corresponding author
  1. University of Pennsylvania, United States

In our eyes, cells called photoreceptors convert the world around us into a pixel-like representation. Our brains must then reorganize this into a representation that reflects the identities of the objects we are looking at. The same object can be represented by very different pixel patterns, depending on its distance from us, the viewing angle and the lighting conditions. Conversely, different objects can be represented by pixel patterns that are similar. This is what makes object recognition a tremendously challenging problem for our brains to solve, and we do not fully understand how our brains manage to recognize objects.

Nonhuman primates (such as rhesus monkeys) are routinely used to study object recognition because their brains are similar to ours in many ways. However, there are advantages to working with mice and rats, including access to an array of modern biotechnological tools that have been optimized for these species. These tools include sophisticated ways to measure neural activity (Svoboda and Yasuda, 2006), to manipulate neural activity (Fenno et al., 2011), and to map how neurons are connected together within and between brain areas (Oh et al., 2014).

Skepticism that rodents could be used to gain insight into object recognition has largely been targeted at the ways in which rodent visual systems deviate from our own. For example, the retinae of mice and rats are specialized for seeing in the dark, and they lack a region called the fovea that allows humans to see objects in great detail at the center of the gaze. The visual cortex is also organized differently in primates and rodents with regard to how neurons with similar preferences for visual stimuli are clustered together within each brain area, and a much smaller fraction of the rodent cortex is devoted to visual processing. In light of all of these differences, can we really learn much about how our brains recognize objects by studying how rodents see?

In an earlier study, Davide Zoccolan and colleagues presented behavioral evidence that rats are capable of identifying objects under variations in viewing conditions (Zoccolan et al., 2009). Now, in eLife, Zoccolan and co-workers at SISSA in Trieste, the Istituto Italiano di Tecnologia and Harvard Medical School – including Sina Tafazoli and Houman Safaai as joint first authors – present evidence that this behavior is supported by four visual areas of the brain that are arranged in a functional hierarchy (Tafazoli et al., 2017). This is analogous to how object processing happens in the primate brain (DiCarlo et al., 2012).

Researchers had previously relied on anatomical evidence to argue that visual brain areas in rats are organized in a hierarchical fashion (Coogan and Burkhalter, 1993). Tafazoli et al. recorded the activity of four of these areas – termed V1, LM, LI and LL – in response to different objects as they systematically changed a number of variables (such as the position, size and luminance of each object). With this data, they quantified how much information each brain area reflected about the identity of the object, as well as how that information was formatted.

A key insight came from analyzing the degree to which changes in the neural responses to different objects could be attributed to differences in object luminance as opposed to object shape. Compared to the other brain areas, the firing rate of the neurons in V1 (the first brain area in the hierarchy) depended more strongly on the amount of luminance within the region of the visual field that each neuron was sensitive to. Moving through the hierarchy, an increasingly large proportion of the responses of the neurons reflected information about the shape of the object. At the same time, there was a systematic increase in the degree to which information about object identity was formatted in a manner that would make it easy for higher brain areas to access this information (DiCarlo and Cox, 2007).

In the face of considerable evidence that object processing in rats and primates is different, Tafazoli et al. have uncovered a compelling similarity. By design, their study has strong parallels with the studies that established a hierarchy for object processing in the primate brain, and their results suggest that rats and primates may perform object recognition in broadly similar ways. Future work will be required to determine the degree to which the nuts-and-bolts of object processing are in fact the same between the species.

References

    1. Coogan TA
    2. Burkhalter A
    (1993)
    Hierarchical organization of areas in rat visual cortex
    Journal of Neuroscience 13:3749–3772.

Article and author information

Author details

  1. Nicole C Rust

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    nrust@sas.upenn.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7820-6696

Publication history

  1. Version of Record published: April 12, 2017 (version 1)

Copyright

© 2017, Rust

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,834
    Page views
  • 193
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole C Rust
(2017)
Object Recognition: Do rats see like we see?
eLife 6:e26401.
https://doi.org/10.7554/eLife.26401

Further reading

    1. Medicine
    2. Neuroscience
    Guido I Guberman et al.
    Research Article Updated

    Background:

    The heterogeneity of white matter damage and symptoms in concussion has been identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI (dMRI) studies on concussion have traditionally relied on group-comparison approaches that average out heterogeneity. To leverage, rather than average out, concussion heterogeneity, we combined dMRI and multivariate statistics to characterize multi-tract multi-symptom relationships.

    Methods:

    Using cross-sectional data from 306 previously concussed children aged 9–10 from the Adolescent Brain Cognitive Development Study, we built connectomes weighted by classical and emerging diffusion measures. These measures were combined into two informative indices, the first representing microstructural complexity, the second representing axonal density. We deployed pattern-learning algorithms to jointly decompose these connectivity features and 19 symptom measures.

    Results:

    Early multi-tract multi-symptom pairs explained the most covariance and represented broad symptom categories, such as a general problems pair, or a pair representing all cognitive symptoms, and implicated more distributed networks of white matter tracts. Further pairs represented more specific symptom combinations, such as a pair representing attention problems exclusively, and were associated with more localized white matter abnormalities. Symptom representation was not systematically related to tract representation across pairs. Sleep problems were implicated across most pairs, but were related to different connections across these pairs. Expression of multi-tract features was not driven by sociodemographic and injury-related variables, as well as by clinical subgroups defined by the presence of ADHD. Analyses performed on a replication dataset showed consistent results.

    Conclusions:

    Using a double-multivariate approach, we identified clinically-informative, cross-demographic multi-tract multi-symptom relationships. These results suggest that rather than clear one-to-one symptom-connectivity disturbances, concussions may be characterized by subtypes of symptom/connectivity relationships. The symptom/connectivity relationships identified in multi-tract multi-symptom pairs were not apparent in single-tract/single-symptom analyses. Future studies aiming to better understand connectivity/symptom relationships should take into account multi-tract multi-symptom heterogeneity.

    Funding:

    Financial support for this work came from a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (G.I.G.), an Ontario Graduate Scholarship (S.S.), a Restracomp Research Fellowship provided by the Hospital for Sick Children (S.S.), an Institutional Research Chair in Neuroinformatics (M.D.), as well as a Natural Sciences and Engineering Research Council CREATE grant (M.D.).

    1. Neuroscience
    Stefanie Engert et al.
    Research Article

    Gustatory sensory neurons detect caloric and harmful compounds in potential food and convey this information to the brain to inform feeding decisions. To examine the signals that gustatory neurons transmit and receive, we reconstructed gustatory axons and their synaptic sites in the adult Drosophila melanogaster brain, utilizing a whole-brain electron microscopy volume. We reconstructed 87 gustatory projections from the proboscis labellum in the right hemisphere and 57 from the left, representing the majority of labellar gustatory axons. Gustatory neurons contain a nearly equal number of interspersed pre-and post-synaptic sites, with extensive synaptic connectivity among gustatory axons. Morphology- and connectivity-based clustering revealed six distinct groups, likely representing neurons recognizing different taste modalities. The vast majority of synaptic connections are between neurons of the same group. This study resolves the anatomy of labellar gustatory projections, reveals that gustatory projections are segregated based on taste modality, and uncovers synaptic connections that may alter the transmission of gustatory signals.