1. Neuroscience
Download icon

Object Recognition: Do rats see like we see?

  1. Nicole C Rust  Is a corresponding author
  1. University of Pennsylvania, United States
Insight
  • Cited 0
  • Views 1,768
  • Annotations
Cite this article as: eLife 2017;6:e26401 doi: 10.7554/eLife.26401

Abstract

Like primates, the rat brain areas thought to be involved in visual object recognition are arranged in a hierarchy.

Main text

In our eyes, cells called photoreceptors convert the world around us into a pixel-like representation. Our brains must then reorganize this into a representation that reflects the identities of the objects we are looking at. The same object can be represented by very different pixel patterns, depending on its distance from us, the viewing angle and the lighting conditions. Conversely, different objects can be represented by pixel patterns that are similar. This is what makes object recognition a tremendously challenging problem for our brains to solve, and we do not fully understand how our brains manage to recognize objects.

Nonhuman primates (such as rhesus monkeys) are routinely used to study object recognition because their brains are similar to ours in many ways. However, there are advantages to working with mice and rats, including access to an array of modern biotechnological tools that have been optimized for these species. These tools include sophisticated ways to measure neural activity (Svoboda and Yasuda, 2006), to manipulate neural activity (Fenno et al., 2011), and to map how neurons are connected together within and between brain areas (Oh et al., 2014).

Skepticism that rodents could be used to gain insight into object recognition has largely been targeted at the ways in which rodent visual systems deviate from our own. For example, the retinae of mice and rats are specialized for seeing in the dark, and they lack a region called the fovea that allows humans to see objects in great detail at the center of the gaze. The visual cortex is also organized differently in primates and rodents with regard to how neurons with similar preferences for visual stimuli are clustered together within each brain area, and a much smaller fraction of the rodent cortex is devoted to visual processing. In light of all of these differences, can we really learn much about how our brains recognize objects by studying how rodents see?

In an earlier study, Davide Zoccolan and colleagues presented behavioral evidence that rats are capable of identifying objects under variations in viewing conditions (Zoccolan et al., 2009). Now, in eLife, Zoccolan and co-workers at SISSA in Trieste, the Istituto Italiano di Tecnologia and Harvard Medical School – including Sina Tafazoli and Houman Safaai as joint first authors – present evidence that this behavior is supported by four visual areas of the brain that are arranged in a functional hierarchy (Tafazoli et al., 2017). This is analogous to how object processing happens in the primate brain (DiCarlo et al., 2012).

Researchers had previously relied on anatomical evidence to argue that visual brain areas in rats are organized in a hierarchical fashion (Coogan and Burkhalter, 1993). Tafazoli et al. recorded the activity of four of these areas – termed V1, LM, LI and LL – in response to different objects as they systematically changed a number of variables (such as the position, size and luminance of each object). With this data, they quantified how much information each brain area reflected about the identity of the object, as well as how that information was formatted.

A key insight came from analyzing the degree to which changes in the neural responses to different objects could be attributed to differences in object luminance as opposed to object shape. Compared to the other brain areas, the firing rate of the neurons in V1 (the first brain area in the hierarchy) depended more strongly on the amount of luminance within the region of the visual field that each neuron was sensitive to. Moving through the hierarchy, an increasingly large proportion of the responses of the neurons reflected information about the shape of the object. At the same time, there was a systematic increase in the degree to which information about object identity was formatted in a manner that would make it easy for higher brain areas to access this information (DiCarlo and Cox, 2007).

In the face of considerable evidence that object processing in rats and primates is different, Tafazoli et al. have uncovered a compelling similarity. By design, their study has strong parallels with the studies that established a hierarchy for object processing in the primate brain, and their results suggest that rats and primates may perform object recognition in broadly similar ways. Future work will be required to determine the degree to which the nuts-and-bolts of object processing are in fact the same between the species.

References

    1. Coogan TA
    2. Burkhalter A
    (1993)
    Hierarchical organization of areas in rat visual cortex
    Journal of Neuroscience 13:3749–3772.

Article and author information

Author details

  1. Nicole C Rust

    Department of Psychology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    nrust@sas.upenn.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7820-6696

Publication history

  1. Version of Record published: April 12, 2017 (version 1)

Copyright

© 2017, Rust

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,768
    Page views
  • 191
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tania Moreno-Mármol et al.
    Research Article Updated

    The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.

    1. Neuroscience
    Matthias Luft et al.
    Tools and Resources Updated

    Surgical nerve transfers are used to efficiently treat peripheral nerve injuries, neuromas, phantom limb pain, or improve bionic prosthetic control. Commonly, one donor nerve is transferred to one target muscle. However, the transfer of multiple nerves onto a single target muscle may increase the number of muscle signals for myoelectric prosthetic control and facilitate the treatment of multiple neuromas. Currently, no experimental models are available. This study describes a novel experimental model to investigate the neurophysiological effects of peripheral double nerve transfers to a common target muscle. In 62 male Sprague-Dawley rats, the ulnar nerve of the antebrachium alone (n=30) or together with the anterior interosseus nerve (n=32) was transferred to reinnervate the long head of the biceps brachii. Before neurotization, the motor branch to the biceps’ long head was transected at the motor entry point. Twelve weeks after surgery, muscle response to neurotomy, behavioral testing, retrograde labeling, and structural analyses were performed to assess reinnervation. These analyses indicated that all nerves successfully reinnervated the target muscle. No aberrant reinnervation was observed by the originally innervating nerve. Our observations suggest a minimal burden for the animal with no signs of functional deficit in daily activities or auto-mutilation in both procedures. Furthermore, standard neurophysiological analyses for nerve and muscle regeneration were applicable. This newly developed nerve transfer model allows for the reliable and standardized investigation of neural and functional changes following the transfer of multiple donor nerves to one target muscle.