Evolutionary changes in transcription factor coding sequence quantitatively alter sensory organ development and function

  1. Simon Weinberger
  2. Matthew P Topping
  3. Jiekun Yan
  4. Annelies Claeys
  5. Natalie De Geest
  6. Duru Ozbay
  7. Talah Hassan
  8. Xiaoli He
  9. Joerg T Albert
  10. Bassem A Hassan  Is a corresponding author
  11. Ariane Ramaekers  Is a corresponding author
  1. VIB Center for the Biology of Disease, Belgium
  2. University College London, United Kingdom
  3. ICM, France

Abstract

'Toolkit' genes are highly conserved developmental regulators. While changes in their regulatory elements contribute to morphological evolution, the role of coding sequence (CDS) evolution remains unresolved. We used CDS-specific knock-ins of the proneural transcription factor Atonal homologs (ATHs) to address this question. Drosophila Atonal CDS was endogenously replaced with that of distant ATHs at key phylogenetic positions, non-ATH proneural genes, and the closest CDS to ancestral proneural genes. ATHs and the ancestral-like gene rescued sensory organ fate in atonal mutants, in contrast to non-ATHs. Surprisingly, different ATHs displayed a gradient of quantitative variation in proneural activity and the number and functionality of sense organs. This proneural potency gradient correlated directly with ATH protein stability, including in response to Notch signaling, independently of mRNA levels or codon usage. This establishes a distinct and ancient function for ATHs and demonstrates that CDS evolution can underlie quantitative variation in sensory development and function.

Article and author information

Author details

  1. Simon Weinberger

    VIB Center for the Biology of Disease, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew P Topping

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiekun Yan

    VIB Center for the Biology of Disease, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Annelies Claeys

    VIB Center for the Biology of Disease, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Natalie De Geest

    VIB Center for the Biology of Disease, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Duru Ozbay

    VIB Center for the Biology of Disease, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Talah Hassan

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaoli He

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Joerg T Albert

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Bassem A Hassan

    Brain Development, ICM, Paris, France
    For correspondence
    bassem.hassan@icm-institute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9533-4908
  11. Ariane Ramaekers

    VIB Center for the Biology of Disease, Leuven, Belgium
    For correspondence
    ariane.ramaekers@icm-institute.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Vlaams Instituut voor Biotechnologie

  • Simon Weinberger
  • Jiekun Yan
  • Annelies Claeys
  • Natalie De Geest
  • Duru Ozbay
  • Bassem A Hassan
  • Ariane Ramaekers

Fonds Wetenschappelijk Onderzoek

  • Simon Weinberger
  • Jiekun Yan
  • Annelies Claeys
  • Natalie De Geest
  • Duru Ozbay
  • Bassem A Hassan
  • Ariane Ramaekers

BELSPO

  • Simon Weinberger
  • Jiekun Yan
  • Annelies Claeys
  • Natalie De Geest
  • Duru Ozbay
  • Bassem A Hassan
  • Ariane Ramaekers

European Commission

  • Simon Weinberger
  • Bassem A Hassan

Human Frontier Science Program

  • Matthew P Topping
  • Talah Hassan
  • Xiaoli He
  • Joerg T Albert

Biotechnology and Biological Sciences Research Council

  • Matthew P Topping
  • Talah Hassan
  • Xiaoli He
  • Joerg T Albert

Paul G. Allen Family Foundation

  • Bassem A Hassan

Einstein Stiftung Berlin

  • Bassem A Hassan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Weinberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,852
    views
  • 410
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Weinberger
  2. Matthew P Topping
  3. Jiekun Yan
  4. Annelies Claeys
  5. Natalie De Geest
  6. Duru Ozbay
  7. Talah Hassan
  8. Xiaoli He
  9. Joerg T Albert
  10. Bassem A Hassan
  11. Ariane Ramaekers
(2017)
Evolutionary changes in transcription factor coding sequence quantitatively alter sensory organ development and function
eLife 6:e26402.
https://doi.org/10.7554/eLife.26402

Share this article

https://doi.org/10.7554/eLife.26402

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.