1. Cell Biology
Download icon

ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins

  1. Lu Zhu
  2. Jeff Ryan Jorgensen
  3. Ming Li
  4. Ya-Shan Chuang
  5. Scott D Emr  Is a corresponding author
  1. Cornell University, United States
  2. University of Michigan, United States
Research Article
  • Cited 38
  • Views 4,774
  • Annotations
Cite this article as: eLife 2017;6:e26403 doi: 10.7554/eLife.26403

Abstract

The lysosome plays an important role in maintaining cellular nutrient homeostasis. Regulation of nutrient storage can occur by the ubiquitination of certain transporters that are then sorted into the lysosome lumen for degradation. To better understand the underlying mechanism of this process, we performed genetic screens to identify components of the sorting machinery required for vacuole membrane protein degradation. These screens uncovered genes that encode a ubiquitin ligase complex, components of the PtdIns 3-kinase complex, and the ESCRT machinery. We developed a novel ubiquitination system, Rapamycin Induced Degradation (RapiDeg), to test the sorting defects caused by these mutants. These tests revealed that ubiquitinated vacuole membrane proteins recruit ESCRTs to the vacuole surface, where they mediate cargo sorting and direct cargo delivery into the vacuole lumen. Our findings demonstrate that the ESCRTs can function at both the late endosome and the vacuole membrane to mediate cargo sorting and intra-luminal vesicle formation.

Article and author information

Author details

  1. Lu Zhu

    Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeff Ryan Jorgensen

    Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ming Li

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ya-Shan Chuang

    Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Scott D Emr

    Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    sde26@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5408-6781

Funding

Cornell University (Scott Emr research grant CU3704)

  • Scott D Emr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Publication history

  1. Received: February 27, 2017
  2. Accepted: June 23, 2017
  3. Accepted Manuscript published: June 29, 2017 (version 1)
  4. Version of Record published: July 12, 2017 (version 2)

Copyright

© 2017, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,774
    Page views
  • 1,014
    Downloads
  • 38
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.

    1. Cell Biology
    Luca Minati et al.
    Tools and Resources Updated

    A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here, we present AHA-mediated RIBOsome isolation (AHARIBO), a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs, and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds of lncRNAs.