Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age

  1. Lieke de Boer  Is a corresponding author
  2. Jan Axelsson
  3. Katrine Riklund
  4. Lars Nyberg
  5. Peter Dayan
  6. Lars Bäckman
  7. Marc Guitart-Masip  Is a corresponding author
  1. Karolinska Institute, Sweden
  2. Umeå University, Sweden
  3. University College London, United Kingdom

Abstract

Probabilistic reward learning is characterised by individual differences that become acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward learning task to younger and older adults, and combining computational modelling of behaviour, fMRI and PET measurements of DA D1 availability. We found that anticipatory value signals in ventromedial prefrontal cortex (vmPFC) were attenuated in older adults. The strength of this signal predicted performance beyond age and was modulated by D1 availability in nucleus accumbens. These results uncover that a value-anticipation mechanism in vmPFC declines in aging, and that this mechanisms is associated with DA D1 receptor availability.

Article and author information

Author details

  1. Lieke de Boer

    Aging Research Center, Karolinska Institute, Stockholm, Sweden
    For correspondence
    liekelotte@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3381-2040
  2. Jan Axelsson

    Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Katrine Riklund

    Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Lars Nyberg

    Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Dayan

    Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3476-1839
  6. Lars Bäckman

    Aging Research Center, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Guitart-Masip

    Aging Research Center, Karolinska Institute, Stockholm, Sweden
    For correspondence
    marc.guitart-masip@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2294-6492

Funding

Vetenskapsrådet (VR521-2013-2589)

  • Marc Guitart-Masip

Gatsby Charitable Foundation

  • Peter Dayan

Alexander von Humboldt-Stiftung (Humboldt Research Award)

  • Lars Bäckman

Stichting af Jochnick Foundation

  • Lars Bäckman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained from the Umeå Ethical Review Board, identifier DNR 2014-251-31M. All participants provided written informed consent prior to commencing the study.

Copyright

© 2017, de Boer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,991
    views
  • 288
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lieke de Boer
  2. Jan Axelsson
  3. Katrine Riklund
  4. Lars Nyberg
  5. Peter Dayan
  6. Lars Bäckman
  7. Marc Guitart-Masip
(2017)
Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age
eLife 6:e26424.
https://doi.org/10.7554/eLife.26424

Share this article

https://doi.org/10.7554/eLife.26424

Further reading

    1. Neuroscience
    Magdalena Ziółkowska, Narges Sotoudeh ... Kasia Radwanska
    Research Article

    The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE). Here, we reveal that the RE→dCA1 pathway contributes to the extinction of contextual fear by affecting CFE-induced molecular remodeling of excitatory synapses. Anatomical tracing and chemogenetic manipulation in mice demonstrate that RE neurons form synapses and regulate synaptic transmission in the stratum oriens (SO) and lacunosum-moleculare (SLM) of the dCA1 area, but not in the stratum radiatum (SR). We also observe CFE-specific structural changes of excitatory synapses and expression of the synaptic scaffold protein, PSD-95, in both strata innervated by RE, but not in SR. Interestingly, only the changes in SLM are specific for the dendrites innervated by RE. To further support the role of the RE→dCA1 projection in CFE, we demonstrate that brief chemogenetic inhibition of the RE→dCA1 pathway during a CFE session persistently impairs the formation of CFE memory and CFE-induced changes of PSD-95 levels in SLM. Thus, our data indicate that RE participates in CFE by regulating CFE-induced molecular remodeling of dCA1 synapses.

    1. Neuroscience
    Xing Xiao, Gagik Yeghiazaryan ... Anne Christine Hausen
    Short Report

    Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R). To analyze the functional role of Ox1R signaling in dopaminergic neurons, we deleted Ox1R specifically in dopamine transporter-expressing neurons of mice and investigated the functional consequences. Deletion of Ox1R increased locomotor activity and exploration during exposure to novel environments or when intracerebroventricularely injected with orexin A. Spontaneous activity in home cages, anxiety, reward processing, and energy metabolism did not change. Positron emission tomography imaging revealed that Ox1R signaling in dopaminergic neurons affected distinct neural circuits depending on the stimulation mode. In line with an increase of neural activity in the lateral paragigantocellular nucleus (LPGi) of Ox1RΔDAT mice, we found that dopaminergic projections innervate the LPGi in regions where the inhibitory dopamine receptor subtype D2 but not the excitatory D1 subtype resides. These data suggest a crucial regulatory role of Ox1R signaling in dopaminergic neurons in novelty-induced locomotion and exploration.