Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age

  1. Lieke de Boer  Is a corresponding author
  2. Jan Axelsson
  3. Katrine Riklund
  4. Lars Nyberg
  5. Peter Dayan
  6. Lars Bäckman
  7. Marc Guitart-Masip  Is a corresponding author
  1. Karolinska Institute, Sweden
  2. Umeå University, Sweden
  3. University College London, United Kingdom

Abstract

Probabilistic reward learning is characterised by individual differences that become acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward learning task to younger and older adults, and combining computational modelling of behaviour, fMRI and PET measurements of DA D1 availability. We found that anticipatory value signals in ventromedial prefrontal cortex (vmPFC) were attenuated in older adults. The strength of this signal predicted performance beyond age and was modulated by D1 availability in nucleus accumbens. These results uncover that a value-anticipation mechanism in vmPFC declines in aging, and that this mechanisms is associated with DA D1 receptor availability.

Article and author information

Author details

  1. Lieke de Boer

    Aging Research Center, Karolinska Institute, Stockholm, Sweden
    For correspondence
    liekelotte@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3381-2040
  2. Jan Axelsson

    Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Katrine Riklund

    Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Lars Nyberg

    Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Dayan

    Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3476-1839
  6. Lars Bäckman

    Aging Research Center, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Guitart-Masip

    Aging Research Center, Karolinska Institute, Stockholm, Sweden
    For correspondence
    marc.guitart-masip@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2294-6492

Funding

Vetenskapsrådet (VR521-2013-2589)

  • Marc Guitart-Masip

Gatsby Charitable Foundation

  • Peter Dayan

Alexander von Humboldt-Stiftung (Humboldt Research Award)

  • Lars Bäckman

Stichting af Jochnick Foundation

  • Lars Bäckman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolfram Schultz, University of Cambridge, United Kingdom

Ethics

Human subjects: Ethical approval was obtained from the Umeå Ethical Review Board, identifier DNR 2014-251-31M. All participants provided written informed consent prior to commencing the study.

Version history

  1. Received: February 28, 2017
  2. Accepted: August 11, 2017
  3. Accepted Manuscript published: September 5, 2017 (version 1)
  4. Version of Record published: September 11, 2017 (version 2)

Copyright

© 2017, de Boer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,924
    views
  • 279
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lieke de Boer
  2. Jan Axelsson
  3. Katrine Riklund
  4. Lars Nyberg
  5. Peter Dayan
  6. Lars Bäckman
  7. Marc Guitart-Masip
(2017)
Attenuation of dopamine-modulated prefrontal value signals underlies probabilistic reward learning deficits in old age
eLife 6:e26424.
https://doi.org/10.7554/eLife.26424

Share this article

https://doi.org/10.7554/eLife.26424

Further reading

    1. Neuroscience
    David J Herzfeld
    Insight

    Abnormal activity in the cerebellar nuclei can be used to predict motor symptoms and induce them experimentally, pointing to potential therapeutic strategies.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.