Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer

  1. Janine Bowring
  2. Maan M Neamah
  3. Jorge Donderis
  4. Ignacio Mir-Sanchis
  5. Christian Alite
  6. J Rafael Ciges-Tomas
  7. Elisa Maiques
  8. Iltyar Medmedov
  9. Alberto Marina
  10. Jose R Penades  Is a corresponding author
  1. Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
  2. Instituto de Biomedicina de Valencia (IBV-CSIC), Spain
  3. The University of Chicago, United States

Abstract

Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature’s most fascinating subcellular parasites.

Article and author information

Author details

  1. Janine Bowring

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Maan M Neamah

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7068-8416
  3. Jorge Donderis

    Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Ignacio Mir-Sanchis

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6536-0045
  5. Christian Alite

    Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. J Rafael Ciges-Tomas

    Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Elisa Maiques

    Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Iltyar Medmedov

    Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Alberto Marina

    Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1334-5273
  10. Jose R Penades

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    joser.penades@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6439-5262

Funding

Wellcome (201531/Z/16/Z)

  • Jose R Penades

Biotechnology and Biological Sciences Research Council (BB/N002873/1)

  • Jose R Penades

Medical Research Council (MR/M003876/1)

  • Jose R Penades

Ministerio de Economía y Competitividad (BIO2013-42619-P)

  • Alberto Marina

Ministerio de Economía y Competitividad (BIO2016-78571-P)

  • Alberto Marina

ERC Advanced Grant 2014 (Proposal n{degree sign} 670932 Dut-signal)

  • Jose R Penades

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Bowring et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,210
    views
  • 410
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine Bowring
  2. Maan M Neamah
  3. Jorge Donderis
  4. Ignacio Mir-Sanchis
  5. Christian Alite
  6. J Rafael Ciges-Tomas
  7. Elisa Maiques
  8. Iltyar Medmedov
  9. Alberto Marina
  10. Jose R Penades
(2017)
Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer
eLife 6:e26487.
https://doi.org/10.7554/eLife.26487

Share this article

https://doi.org/10.7554/eLife.26487

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.