A quantitative theory of gamma synchronization in macaque V1

  1. Eric Lowet  Is a corresponding author
  2. Mark Jonathan Roberts
  3. Alina Peter
  4. Bart Gips
  5. Peter de Weerd
  1. Boston University, United States
  2. Maastricht University, Netherlands
  3. Ernst Strüngmann Institute for Neuroscience in Cooperation with Max PLanck Society, Germany
  4. Radboud University, Netherlands

Abstract

Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1, and is likely generalizable to other brain regions and rhythms.

Article and author information

Author details

  1. Eric Lowet

    Boston University, Boston, United States
    For correspondence
    elowet@mailfence.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9793-0639
  2. Mark Jonathan Roberts

    Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Alina Peter

    Ernst Strüngmann Institute for Neuroscience in Cooperation with Max PLanck Society, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Bart Gips

    Donders Institute for Brain,Cognition and Behavior, Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter de Weerd

    Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (451-09-025)

  • Mark Jonathan Roberts

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (453-04-002)

  • Peter de Weerd

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All the procedures were in accordance with the European council directive 684 2010/63/EU, the Dutch 'experiments on animal acts' (1997) and approved by the Radboud 685 University ethical committee on experiments with animals (Dier‐Experimenten‐Commissie, 686 DEC).

Copyright

© 2017, Lowet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,749
    views
  • 476
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Lowet
  2. Mark Jonathan Roberts
  3. Alina Peter
  4. Bart Gips
  5. Peter de Weerd
(2017)
A quantitative theory of gamma synchronization in macaque V1
eLife 6:e26642.
https://doi.org/10.7554/eLife.26642

Share this article

https://doi.org/10.7554/eLife.26642

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.