NFATc2 enhances tumor-initiating phenotypes through the NFATc2/SOX2/ALDH axis in lung adenocarcinoma

  1. Zhi-Jie XIAO
  2. Jing Liu
  3. Si-Qi Wang
  4. Yun Zhu
  5. Xu-Yuan Gao
  6. Vicky Pui-Chi Tin
  7. Jing Qin
  8. Jun-Wen Wang
  9. Maria Pik Wong  Is a corresponding author
  1. The University of Hong Kong, Hong Kong
  2. The Chinese University of Hong Kong, Hong Kong
  3. MayoClinic, United States

Abstract

Tumor initiating cells (TIC) are dynamic cancer cell subsets that display enhanced tumor functions and resilience to treatment but the mechanism of TIC induction or maintenance in lung cancer is not fully understood. In this study, we show the calcium pathway transcription factor NFATc2 is a novel regulator of lung TIC phenotypes, including tumorspheres, cell motility, tumorigenesis, as well as in vitro and in vivo responses to chemotherapy and targeted therapy. In human lung cancers, high NFATc2 expression predicted poor tumor differentiation, adverse recurrence-free and cancer-specific overall survivals. Mechanistic investigations identified NFATc2 response elements in the 3' enhancer region of SOX2, and NFATc2/SOX2 coupling upregulates ALDH1A1 by binding to its 5' enhancer. Through this axis, oxidative stress induced by cancer drug treatment are attenuated, leading to increased resistance in a mutation-independent manner. Targeting this axis provides a novel approach for the long term treatment of lung cancer through TIC elimination.

Article and author information

Author details

  1. Zhi-Jie XIAO

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Jing Liu

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Si-Qi Wang

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Yun Zhu

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Xu-Yuan Gao

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Vicky Pui-Chi Tin

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Jing Qin

    School of life sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  8. Jun-Wen Wang

    Department of Health Sciences Research, MayoClinic, Scottsdale, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Pik Wong

    Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
    For correspondence
    mwpik@hku.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4028-926X

Funding

Research Grants Council, University Grants Committee (HKU 17123514 M)

  • Zhi-Jie XIAO
  • Jing Liu
  • Si-Qi Wang
  • Yun Zhu
  • Xu-Yuan Gao
  • Vicky Pui-Chi Tin
  • Maria Pik Wong

University of Hong Kong

  • Zhi-Jie XIAO
  • Jing Liu
  • Si-Qi Wang
  • Yun Zhu
  • Xu-Yuan Gao
  • Vicky Pui-Chi Tin
  • Maria Pik Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado School of Medicine, United States

Ethics

Animal experimentation: All animal experiments were performed after approval by the Animal Ethics Committee, the University of Hong Kong according to issued guidelines. (CULATR No.4020-16)

Version history

  1. Received: March 13, 2017
  2. Accepted: July 22, 2017
  3. Accepted Manuscript published: July 24, 2017 (version 1)
  4. Version of Record published: August 24, 2017 (version 2)

Copyright

© 2017, XIAO et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,094
    views
  • 362
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhi-Jie XIAO
  2. Jing Liu
  3. Si-Qi Wang
  4. Yun Zhu
  5. Xu-Yuan Gao
  6. Vicky Pui-Chi Tin
  7. Jing Qin
  8. Jun-Wen Wang
  9. Maria Pik Wong
(2017)
NFATc2 enhances tumor-initiating phenotypes through the NFATc2/SOX2/ALDH axis in lung adenocarcinoma
eLife 6:e26733.
https://doi.org/10.7554/eLife.26733

Share this article

https://doi.org/10.7554/eLife.26733

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.