1. Neuroscience
Download icon

Effects of dopamine on reinforcement learning and consolidation in Parkinson’s disease

  1. John P Grogan  Is a corresponding author
  2. Demitra Tsivos
  3. Laura Smith
  4. Brogan E Knight
  5. Rafal Bogacz
  6. Alan Whone
  7. Elizabeth J Coulthard  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. North Bristol NHS Trust, United Kingdom
  3. University of Oxford, United Kingdom
Research Article
  • Cited 23
  • Views 3,375
  • Annotations
Cite this article as: eLife 2017;6:e26801 doi: 10.7554/eLife.26801

Abstract

Emerging evidence suggests that dopamine may modulate learning and memory with important implications for understanding the neurobiology of memory and future therapeutic targeting. An influential hypothesis posits that dopamine biases reinforcement learning. More recent data also suggest an influence during both consolidation and retrieval. Eighteen Parkinson’s disease patients learned through feedback ON or OFF medication with memory tested 24 hours later ON or OFF medication (4 conditions, within-subjects design with matched healthy control group). Patients OFF medication during learning decreased in memory accuracy over the following 24 hours. In contrast to previous studies, however, dopaminergic medication during learning and testing did not affect expression of positive or negative reinforcement. Two further experiments were run without the 24-hour delay, but they too failed to reproduce effects of dopaminergic medication on reinforcement learning. While supportive of a dopaminergic role in consolidation, this study failed to replicate previous findings on reinforcement learning.

Article and author information

Author details

  1. John P Grogan

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    john.grogan@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0463-8904
  2. Demitra Tsivos

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Smith

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Brogan E Knight

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafal Bogacz

    Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan Whone

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth J Coulthard

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    elizabeth.coulthard@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (PhD Studentshipt SJ1102)

  • John P Grogan

BRACE (Project grant)

  • John P Grogan
  • Elizabeth J Coulthard

Medical Research Council (MC UU 12024/5)

  • Rafal Bogacz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained from the NHS Research Ethics Committee at Frenchay, Bristol (09/H0107/18). All participants gave written consent, in accordance with the Declaration of Helsinki.

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Publication history

  1. Received: March 14, 2017
  2. Accepted: July 7, 2017
  3. Accepted Manuscript published: July 10, 2017 (version 1)
  4. Version of Record published: July 27, 2017 (version 2)

Copyright

© 2017, Grogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,375
    Page views
  • 363
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    P Christiaan Klink et al.
    Research Article Updated

    Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.

    1. Developmental Biology
    2. Neuroscience
    Eduardo Loureiro-Campos et al.
    Research Article

    The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.