Effects of dopamine on reinforcement learning and consolidation in Parkinson’s disease

  1. John P Grogan  Is a corresponding author
  2. Demitra Tsivos
  3. Laura Smith
  4. Brogan E Knight
  5. Rafal Bogacz
  6. Alan Whone
  7. Elizabeth J Coulthard  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. North Bristol NHS Trust, United Kingdom
  3. University of Oxford, United Kingdom

Abstract

Emerging evidence suggests that dopamine may modulate learning and memory with important implications for understanding the neurobiology of memory and future therapeutic targeting. An influential hypothesis posits that dopamine biases reinforcement learning. More recent data also suggest an influence during both consolidation and retrieval. Eighteen Parkinson’s disease patients learned through feedback ON or OFF medication with memory tested 24 hours later ON or OFF medication (4 conditions, within-subjects design with matched healthy control group). Patients OFF medication during learning decreased in memory accuracy over the following 24 hours. In contrast to previous studies, however, dopaminergic medication during learning and testing did not affect expression of positive or negative reinforcement. Two further experiments were run without the 24-hour delay, but they too failed to reproduce effects of dopaminergic medication on reinforcement learning. While supportive of a dopaminergic role in consolidation, this study failed to replicate previous findings on reinforcement learning.

Article and author information

Author details

  1. John P Grogan

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    john.grogan@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0463-8904
  2. Demitra Tsivos

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Smith

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Brogan E Knight

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafal Bogacz

    Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan Whone

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth J Coulthard

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    elizabeth.coulthard@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (PhD Studentshipt SJ1102)

  • John P Grogan

BRACE (Project grant)

  • John P Grogan
  • Elizabeth J Coulthard

Medical Research Council (MC UU 12024/5)

  • Rafal Bogacz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained from the NHS Research Ethics Committee at Frenchay, Bristol (09/H0107/18). All participants gave written consent, in accordance with the Declaration of Helsinki.

Copyright

© 2017, Grogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,666
    views
  • 443
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John P Grogan
  2. Demitra Tsivos
  3. Laura Smith
  4. Brogan E Knight
  5. Rafal Bogacz
  6. Alan Whone
  7. Elizabeth J Coulthard
(2017)
Effects of dopamine on reinforcement learning and consolidation in Parkinson’s disease
eLife 6:e26801.
https://doi.org/10.7554/eLife.26801

Share this article

https://doi.org/10.7554/eLife.26801

Further reading

    1. Neuroscience
    Walter Senn, Dominik Dold ... Mihai A Petrovici
    Research Article

    One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.

    1. Cell Biology
    2. Neuroscience
    Josse Poppinga, Nolan J Barrett ... Jan RT van Weering
    Research Article

    Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.