1. Neuroscience
Download icon

Effects of dopamine on reinforcement learning and consolidation in Parkinson’s disease

  1. John P Grogan  Is a corresponding author
  2. Demitra Tsivos
  3. Laura Smith
  4. Brogan E Knight
  5. Rafal Bogacz
  6. Alan Whone
  7. Elizabeth J Coulthard  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. North Bristol NHS Trust, United Kingdom
  3. University of Oxford, United Kingdom
Research Article
  • Cited 20
  • Views 3,148
  • Annotations
Cite this article as: eLife 2017;6:e26801 doi: 10.7554/eLife.26801

Abstract

Emerging evidence suggests that dopamine may modulate learning and memory with important implications for understanding the neurobiology of memory and future therapeutic targeting. An influential hypothesis posits that dopamine biases reinforcement learning. More recent data also suggest an influence during both consolidation and retrieval. Eighteen Parkinson’s disease patients learned through feedback ON or OFF medication with memory tested 24 hours later ON or OFF medication (4 conditions, within-subjects design with matched healthy control group). Patients OFF medication during learning decreased in memory accuracy over the following 24 hours. In contrast to previous studies, however, dopaminergic medication during learning and testing did not affect expression of positive or negative reinforcement. Two further experiments were run without the 24-hour delay, but they too failed to reproduce effects of dopaminergic medication on reinforcement learning. While supportive of a dopaminergic role in consolidation, this study failed to replicate previous findings on reinforcement learning.

Article and author information

Author details

  1. John P Grogan

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    john.grogan@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0463-8904
  2. Demitra Tsivos

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Smith

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Brogan E Knight

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafal Bogacz

    Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan Whone

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth J Coulthard

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    elizabeth.coulthard@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (PhD Studentshipt SJ1102)

  • John P Grogan

BRACE (Project grant)

  • John P Grogan
  • Elizabeth J Coulthard

Medical Research Council (MC UU 12024/5)

  • Rafal Bogacz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained from the NHS Research Ethics Committee at Frenchay, Bristol (09/H0107/18). All participants gave written consent, in accordance with the Declaration of Helsinki.

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Publication history

  1. Received: March 14, 2017
  2. Accepted: July 7, 2017
  3. Accepted Manuscript published: July 10, 2017 (version 1)
  4. Version of Record published: July 27, 2017 (version 2)

Copyright

© 2017, Grogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,148
    Page views
  • 356
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Cornelius Schröder et al.
    Research Article Updated

    Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous ‘dual-colour’ two-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates, and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single-neuron types there exist highly specialised mechanisms which are advantageous for the encoding of different visual features.

    1. Neuroscience
    Azadeh HajiHosseini, Cendri A Hutcherson
    Research Article Updated

    How does regulatory focus alter attribute value construction (AVC) and evidence accumulation (EA)? We recorded electroencephalogram during food choices while participants responded naturally or regulated their choices by attending to health attributes or decreasing attention to taste attributes. Using a drift diffusion model, we predicted the time course of neural signals associated with AVC and EA. Results suggested that event-related potentials (ERPs) correlated with the time course of model-predicted taste-attribute signals, with no modulation by regulation. By contrast, suppression of frontal and occipital alpha power correlated with the time course of EA, tracked tastiness according to its goal relevance, and predicted individual variation in successful down-regulation of tastiness. Additionally, an earlier rise in frontal and occipital theta power represented food tastiness more strongly during regulation and predicted a weaker influence of food tastiness on behaviour. Our findings illuminate how regulation modifies the representation of attributes during the process of EA.