Effects of dopamine on reinforcement learning and consolidation in Parkinson’s disease

  1. John P Grogan  Is a corresponding author
  2. Demitra Tsivos
  3. Laura Smith
  4. Brogan E Knight
  5. Rafal Bogacz
  6. Alan Whone
  7. Elizabeth J Coulthard  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. North Bristol NHS Trust, United Kingdom
  3. University of Oxford, United Kingdom

Abstract

Emerging evidence suggests that dopamine may modulate learning and memory with important implications for understanding the neurobiology of memory and future therapeutic targeting. An influential hypothesis posits that dopamine biases reinforcement learning. More recent data also suggest an influence during both consolidation and retrieval. Eighteen Parkinson’s disease patients learned through feedback ON or OFF medication with memory tested 24 hours later ON or OFF medication (4 conditions, within-subjects design with matched healthy control group). Patients OFF medication during learning decreased in memory accuracy over the following 24 hours. In contrast to previous studies, however, dopaminergic medication during learning and testing did not affect expression of positive or negative reinforcement. Two further experiments were run without the 24-hour delay, but they too failed to reproduce effects of dopaminergic medication on reinforcement learning. While supportive of a dopaminergic role in consolidation, this study failed to replicate previous findings on reinforcement learning.

Article and author information

Author details

  1. John P Grogan

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    john.grogan@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0463-8904
  2. Demitra Tsivos

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Smith

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Brogan E Knight

    Clinical Neurosciences, North Bristol NHS Trust, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafal Bogacz

    Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan Whone

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth J Coulthard

    Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
    For correspondence
    elizabeth.coulthard@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (PhD Studentshipt SJ1102)

  • John P Grogan

BRACE (Project grant)

  • John P Grogan
  • Elizabeth J Coulthard

Medical Research Council (MC UU 12024/5)

  • Rafal Bogacz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Ethics

Human subjects: Ethical approval was obtained from the NHS Research Ethics Committee at Frenchay, Bristol (09/H0107/18). All participants gave written consent, in accordance with the Declaration of Helsinki.

Version history

  1. Received: March 14, 2017
  2. Accepted: July 7, 2017
  3. Accepted Manuscript published: July 10, 2017 (version 1)
  4. Version of Record published: July 27, 2017 (version 2)

Copyright

© 2017, Grogan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,595
    views
  • 437
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John P Grogan
  2. Demitra Tsivos
  3. Laura Smith
  4. Brogan E Knight
  5. Rafal Bogacz
  6. Alan Whone
  7. Elizabeth J Coulthard
(2017)
Effects of dopamine on reinforcement learning and consolidation in Parkinson’s disease
eLife 6:e26801.
https://doi.org/10.7554/eLife.26801

Share this article

https://doi.org/10.7554/eLife.26801

Further reading

    1. Neuroscience
    Wenyu Tu, Samuel R Cramer, Nanyin Zhang
    Research Article

    Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by ‘electrophysiology-invisible’ signals. These findings offer a novel perspective on our understanding of RSN interpretation.

    1. Neuroscience
    Shanka Subhra Mondal, Steven Frankland ... Jonathan D Cohen
    Research Article

    Deep neural networks have made tremendous gains in emulating human-like intelligence, and have been used increasingly as ways of understanding how the brain may solve the complex computational problems on which this relies. However, these still fall short of, and therefore fail to provide insight into how the brain supports strong forms of generalization of which humans are capable. One such case is out-of-distribution (OOD) generalization – successful performance on test examples that lie outside the distribution of the training set. Here, we identify properties of processing in the brain that may contribute to this ability. We describe a two-part algorithm that draws on specific features of neural computation to achieve OOD generalization, and provide a proof of concept by evaluating performance on two challenging cognitive tasks. First we draw on the fact that the mammalian brain represents metric spaces using grid cell code (e.g., in the entorhinal cortex): abstract representations of relational structure, organized in recurring motifs that cover the representational space. Second, we propose an attentional mechanism that operates over the grid cell code using determinantal point process (DPP), that we call DPP attention (DPP-A) – a transformation that ensures maximum sparseness in the coverage of that space. We show that a loss function that combines standard task-optimized error with DPP-A can exploit the recurring motifs in the grid cell code, and can be integrated with common architectures to achieve strong OOD generalization performance on analogy and arithmetic tasks. This provides both an interpretation of how the grid cell code in the mammalian brain may contribute to generalization performance, and at the same time a potential means for improving such capabilities in artificial neural networks.