1. Structural Biology and Molecular Biophysics
  2. Cell Biology
Download icon

Structural inhibition of dynamin-mediated membrane fission by endophilin

  1. Annika Hohendahl
  2. Nathaniel Talledge
  3. Valentina Galli
  4. Peter S Shen
  5. Frédéric Humbert
  6. Pietro De Camilli
  7. Adam Frost  Is a corresponding author
  8. Aurélien Roux  Is a corresponding author
  1. University of Geneva, Switzerland
  2. University of California, San Francisco, United States
  3. University of Utah, United States
  4. Howard Hughes Medical Institute, Yale University School of Medicine, United States
Research Article
  • Cited 24
  • Views 2,610
  • Annotations
Cite this article as: eLife 2017;6:e26856 doi: 10.7554/eLife.26856

Abstract

Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.

Article and author information

Author details

  1. Annika Hohendahl

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Nathaniel Talledge

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Galli

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter S Shen

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Frédéric Humbert

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Pietro De Camilli

    Department of Neuroscience, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adam Frost

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    adam.frost@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2231-2577
  8. Aurélien Roux

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    For correspondence
    aurelien.roux@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6088-0711

Funding

H2020 European Research Council (311536)

  • Aurélien Roux

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_130520)

  • Aurélien Roux

Human Frontier Science Program (CDA-0061-08)

  • Aurélien Roux

National Institutes of Health (1DP2GM110772-01)

  • Adam Frost

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_149975)

  • Aurélien Roux

Howard Hughes Medical Institute (55108523)

  • Pietro De Camilli

Searle scholars award (13SSP218)

  • Adam Frost

National Institutes of Health (NS036251)

  • Pietro De Camilli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jenny Hinshaw, National Institutes of Health, United States

Publication history

  1. Received: March 16, 2017
  2. Accepted: September 20, 2017
  3. Accepted Manuscript published: September 21, 2017 (version 1)
  4. Version of Record published: October 31, 2017 (version 2)

Copyright

© 2017, Hohendahl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,610
    Page views
  • 647
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Gukui Chen et al.
    Research Article Updated

    Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD, which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.

    1. Structural Biology and Molecular Biophysics
    Fang Tian et al.
    Research Article Updated

    SARS-CoV-2 has been spreading around the world for the past year. Recently, several variants such as B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), which share a key mutation N501Y on the receptor-binding domain (RBD), appear to be more infectious to humans. To understand the underlying mechanism, we used a cell surface-binding assay, a kinetics study, a single-molecule technique, and a computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction, with a faster association rate and a slower dissociation rate. Atomic force microscopy (AFM)-based single-molecule force microscopy (SMFS) consistently quantified the interaction strength of RBD with the mutation as having increased binding probability and requiring increased unbinding force. Molecular dynamics simulations of RBD–ACE2 complexes indicated that the N501Y mutation introduced additional π-π and π-cation interactions that could explain the changes observed by force microscopy. Taken together, these results suggest that the reinforced RBD–ACE2 interaction that results from the N501Y mutation in the RBD should play an essential role in the higher rate of transmission of SARS-CoV-2 variants, and that future mutations in the RBD of the virus should be under surveillance.