1. Structural Biology and Molecular Biophysics
  2. Cell Biology
Download icon

Structural inhibition of dynamin-mediated membrane fission by endophilin

  1. Annika Hohendahl
  2. Nathaniel Talledge
  3. Valentina Galli
  4. Peter S Shen
  5. Frédéric Humbert
  6. Pietro De Camilli
  7. Adam Frost  Is a corresponding author
  8. Aurélien Roux  Is a corresponding author
  1. University of Geneva, Switzerland
  2. University of California, San Francisco, United States
  3. University of Utah, United States
  4. Howard Hughes Medical Institute, Yale University School of Medicine, United States
Research Article
  • Cited 14
  • Views 2,313
  • Annotations
Cite this article as: eLife 2017;6:e26856 doi: 10.7554/eLife.26856

Abstract

Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.

Article and author information

Author details

  1. Annika Hohendahl

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Nathaniel Talledge

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Galli

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter S Shen

    Department of Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Frédéric Humbert

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Pietro De Camilli

    Department of Neuroscience, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adam Frost

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    adam.frost@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2231-2577
  8. Aurélien Roux

    Department of Biochemistry, University of Geneva, Geneva, Switzerland
    For correspondence
    aurelien.roux@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6088-0711

Funding

H2020 European Research Council (311536)

  • Aurélien Roux

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_130520)

  • Aurélien Roux

Human Frontier Science Program (CDA-0061-08)

  • Aurélien Roux

National Institutes of Health (1DP2GM110772-01)

  • Adam Frost

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_149975)

  • Aurélien Roux

Howard Hughes Medical Institute (55108523)

  • Pietro De Camilli

Searle scholars award (13SSP218)

  • Adam Frost

National Institutes of Health (NS036251)

  • Pietro De Camilli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jenny Hinshaw, National Institutes of Health, United States

Publication history

  1. Received: March 16, 2017
  2. Accepted: September 20, 2017
  3. Accepted Manuscript published: September 21, 2017 (version 1)
  4. Version of Record published: October 31, 2017 (version 2)

Copyright

© 2017, Hohendahl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,313
    Page views
  • 600
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Julia Steiner, Leonid Sazanov
    Research Article

    Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.

    1. Structural Biology and Molecular Biophysics
    Tone Bengtsen et al.
    Research Article

    Nanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently conflicting observations about the shape of nanodiscs, and paves the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.