Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery

  1. Arindam Mondal
  2. Anthony R Dawson
  3. Gregory K Potts
  4. Elyse C Freiberger
  5. Steven F Baker
  6. Lindsey A Moser
  7. Kristen A Bernard
  8. Joshua J Coon
  9. Andrew Mehle  Is a corresponding author
  1. Indian Institute of Technology Kharagpur, India
  2. University of Wisconsin-Madison, United States

Abstract

Influenza virus expresses transcripts early in infection and transitions towards genome replication at later time points. This process requires de novo assembly of the viral replication machinery, large ribonucleoprotein complexes (RNPs) composed of the viral polymerase, genomic RNA and oligomeric nucleoprotein (NP). Despite the central role of RNPs during infection, the factors dictating where and when they assemble are poorly understood. Here we demonstrate that human protein kinase C (PKC) family members regulate RNP assembly. Activated PKCδ interacts with the polymerase subunit PB2 and phospho-regulates NP oligomerization and RNP assembly during infection. Consistent with its role in regulating RNP assembly, knockout of PKCδ impairs virus infection by selectively disrupting genome replication. However, primary transcription from pre-formed RNPs deposited by infecting particles is unaffected. Thus, influenza virus exploits host PKCs to regulate RNP assembly, a step required for the transition from primary transcription to genome replication during the infectious cycle.

Article and author information

Author details

  1. Arindam Mondal

    School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Anthony R Dawson

    Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory K Potts

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elyse C Freiberger

    Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Steven F Baker

    Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lindsey A Moser

    Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristen A Bernard

    Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joshua J Coon

    Department of Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrew Mehle

    Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    amehle@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6060-4330

Funding

Greater Milwaukee Foundation (Shaw Scientist Award)

  • Andrew Mehle

American Lung Association (RG-310016)

  • Andrew Mehle

National Institute of Allergy and Infectious Diseases (R01AI125271)

  • Arindam Mondal
  • Anthony R Dawson
  • Elyse C Freiberger
  • Andrew Mehle

National Institute of General Medical Sciences (R35GM118110)

  • Gregory K Potts
  • Joshua J Coon

National Institute of General Medical Sciences (R00GM088484)

  • Arindam Mondal
  • Andrew Mehle

National Institute of Allergy and Infectious Diseases (T32AI078985)

  • Anthony R Dawson

Burroughs Wellcome Fund (Investigators in the Pathogenesis of Infectious Disease)

  • Andrew Mehle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Version history

  1. Received: March 17, 2017
  2. Accepted: July 29, 2017
  3. Accepted Manuscript published: July 31, 2017 (version 1)
  4. Version of Record published: August 29, 2017 (version 2)

Copyright

© 2017, Mondal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,960
    Page views
  • 653
    Downloads
  • 52
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arindam Mondal
  2. Anthony R Dawson
  3. Gregory K Potts
  4. Elyse C Freiberger
  5. Steven F Baker
  6. Lindsey A Moser
  7. Kristen A Bernard
  8. Joshua J Coon
  9. Andrew Mehle
(2017)
Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery
eLife 6:e26910.
https://doi.org/10.7554/eLife.26910

Share this article

https://doi.org/10.7554/eLife.26910

Further reading

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.

    1. Microbiology and Infectious Disease
    Markéta Častorálová, Jakub Sýs ... Tomas Ruml
    Research Article Updated

    For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.