A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria

  1. John C Whitney
  2. S Brook Peterson
  3. Jungyun Kim
  4. Manuel Pazos
  5. Adrian J Verster
  6. Matthew C Radey
  7. Hemantha D Kulasekara
  8. Mary Q Ching
  9. Nathan P Bullen
  10. Diane Bryant
  11. Young Ah Goo
  12. Michael G Surette
  13. Elhanan Borenstein
  14. Waldemar Vollmer
  15. Joseph D Mougous  Is a corresponding author
  1. McMaster University, Canada
  2. University of Washington, United States
  3. Newcastle University, United Kingdom
  4. Advanced Light Source, United States
  5. Northwestern University, United States

Abstract

The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial habitats of importance to human health and industry. Although these communities are often densely colonized, a broadly distributed contact-dependent mechanism of interbacterial antagonism utilized by Firmicutes has not been elucidated. Here we show that proteins belonging to the LXG polymorphic toxin family present in Streptococus intermedius mediate cell contact- and Esx secretion pathway-dependent growth inhibition of diverse Firmicute species. The structure of one such toxin revealed a previously unobserved protein fold that we demonstrate directs the degradation of a uniquely bacterial molecule required for cell wall biosynthesis, lipid II. Consistent with our functional data linking LXG toxins to interbacterial interactions in S. intermedius, we show that LXG genes are prevalent in the human gut microbiome, a polymicrobial community dominated by Firmicutes. We speculate that interbacterial antagonism mediated by LXG toxins plays a critical role in shaping Firmicute-rich bacterial communities.

Article and author information

Author details

  1. John C Whitney

    Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. S Brook Peterson

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jungyun Kim

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3793-4264
  4. Manuel Pazos

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian J Verster

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew C Radey

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hemantha D Kulasekara

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mary Q Ching

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nathan P Bullen

    Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Diane Bryant

    Experimental Systems Group, Advanced Light Source, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Young Ah Goo

    Northwestern Proteomics Core Facility, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael G Surette

    Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Elhanan Borenstein

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Waldemar Vollmer

    Centre for Bacterial Cell Biology, Newcastle University, Newcastle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Joseph D Mougous

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mougous@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-4861

Funding

Canadian Institutes of Health Research

  • John C Whitney

Natural Sciences and Engineering Research Council of Canada

  • Adrian J Verster

Wellcome (101824/Z/13/Z)

  • Waldemar Vollmer

National Cancer Institute (CCSG P30 CA060553)

  • Young Ah Goo

National Institutes of Health (AI080609)

  • Joseph D Mougous

Howard Hughes Medical Institute

  • Joseph D Mougous

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,997
    views
  • 1,188
    downloads
  • 141
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John C Whitney
  2. S Brook Peterson
  3. Jungyun Kim
  4. Manuel Pazos
  5. Adrian J Verster
  6. Matthew C Radey
  7. Hemantha D Kulasekara
  8. Mary Q Ching
  9. Nathan P Bullen
  10. Diane Bryant
  11. Young Ah Goo
  12. Michael G Surette
  13. Elhanan Borenstein
  14. Waldemar Vollmer
  15. Joseph D Mougous
(2017)
A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria
eLife 6:e26938.
https://doi.org/10.7554/eLife.26938

Share this article

https://doi.org/10.7554/eLife.26938

Further reading

    1. Microbiology and Infectious Disease
    Srinivasan Vijay, Nguyen Le Hoai Bao ... Nguyen Thuy Thuong
    Research Article

    Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15–60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.