1. Microbiology and Infectious Disease
Download icon

A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria

  1. John C Whitney
  2. S Brook Peterson
  3. Jungyun Kim
  4. Manuel Pazos
  5. Adrian J Verster
  6. Matthew C Radey
  7. Hemantha D Kulasekara
  8. Mary Q Ching
  9. Nathan P Bullen
  10. Diane Bryant
  11. Young Ah Goo
  12. Michael G Surette
  13. Elhanan Borenstein
  14. Waldemar Vollmer
  15. Joseph D Mougous  Is a corresponding author
  1. McMaster University, Canada
  2. University of Washington, United States
  3. Newcastle University, United Kingdom
  4. Advanced Light Source, United States
  5. Northwestern University, United States
Research Article
  • Cited 68
  • Views 5,140
  • Annotations
Cite this article as: eLife 2017;6:e26938 doi: 10.7554/eLife.26938

Abstract

The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial habitats of importance to human health and industry. Although these communities are often densely colonized, a broadly distributed contact-dependent mechanism of interbacterial antagonism utilized by Firmicutes has not been elucidated. Here we show that proteins belonging to the LXG polymorphic toxin family present in Streptococcus intermedius mediate cell contact- and Esx secretion pathway-dependent growth inhibition of diverse Firmicute species. The structure of one such toxin revealed a previously unobserved protein fold that we demonstrate directs the degradation of a uniquely bacterial molecule required for cell wall biosynthesis, lipid II. Consistent with our functional data linking LXG toxins to interbacterial interactions in S. intermedius, we show that LXG genes are prevalent in the human gut microbiome, a polymicrobial community dominated by Firmicutes. We speculate that interbacterial antagonism mediated by LXG toxins plays a critical role in shaping Firmicute-rich bacterial communities.

Article and author information

Author details

  1. John C Whitney

    Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. S Brook Peterson

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jungyun Kim

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3793-4264
  4. Manuel Pazos

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian J Verster

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew C Radey

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hemantha D Kulasekara

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mary Q Ching

    Department of Microbiology, School of Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nathan P Bullen

    Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Diane Bryant

    Experimental Systems Group, Advanced Light Source, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Young Ah Goo

    Northwestern Proteomics Core Facility, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael G Surette

    Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Elhanan Borenstein

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Waldemar Vollmer

    Centre for Bacterial Cell Biology, Newcastle University, Newcastle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Joseph D Mougous

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mougous@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-4861

Funding

Canadian Institutes of Health Research

  • John C Whitney

Natural Sciences and Engineering Research Council of Canada

  • Adrian J Verster

Wellcome (101824/Z/13/Z)

  • Waldemar Vollmer

National Cancer Institute (CCSG P30 CA060553)

  • Young Ah Goo

National Institutes of Health (AI080609)

  • Joseph D Mougous

Howard Hughes Medical Institute

  • Joseph D Mougous

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael T Laub, Massachusetts Institute of Technology, United States

Publication history

  1. Received: March 20, 2017
  2. Accepted: July 10, 2017
  3. Accepted Manuscript published: July 11, 2017 (version 1)
  4. Accepted Manuscript updated: July 12, 2017 (version 2)
  5. Version of Record published: August 14, 2017 (version 3)
  6. Version of Record updated: August 24, 2017 (version 4)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,140
    Page views
  • 967
    Downloads
  • 68
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Qi Yan Ang et al.
    Research Article Updated

    East Asians (EAs) experience worse metabolic health outcomes compared to other ethnic groups at lower body mass indices; however, the potential role of the gut microbiota in contributing to these health disparities remains unknown. We conducted a multi-omic study of 46 lean and obese East Asian and White participants living in the San Francisco Bay Area, revealing marked differences between ethnic groups in bacterial richness and community structure. White individuals were enriched for the mucin-degrading Akkermansia muciniphila. East Asian subjects had increased levels of multiple bacterial phyla, fermentative pathways detected by metagenomics, and the short-chain fatty acid end-products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the East Asian and White subjects could not be explained by dietary intake, were more pronounced in lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice demonstrated stable diet- and host genotype-independent differences between the gut microbiotas of East Asian and White individuals that differentially impact host body composition. Taken together, our findings add to the growing body of literature describing microbiome variations between ethnicities and provide a starting point for defining the mechanisms through which the microbiome may shape disparate health outcomes in East Asians.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Amelia E Hinman et al.
    Research Article Updated

    For many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type Mycobacterium tuberculosis (Mtb) and mutants that fail to damage the phagosomal membrane. We identified a set of genes with enhanced expression in response to the mutants. These genes represented a late component of the TLR2-dependent transcriptional response to Mtb, distinct from an earlier component that included Tnf. Expression of the later component was inherent to TLR2 activation, dependent upon endosomal uptake, and enhanced by phagosome acidification. Canonical Mtb virulence factors that contribute to phagosomal membrane damage blunted phagosome acidification and undermined the endosome-specific response. Profiling cell survival and bacterial growth in macrophages demonstrated that the attenuation of these mutants is partially dependent upon TLR2. Further, TLR2 contributed to the attenuated phenotype of one of these mutants in a murine model of infection. These results demonstrate two distinct components of the TLR2 response and identify a component dependent upon endosomal uptake as a point where pathogenic bacteria interfere with the generation of effective inflammation. This interference promotes tuberculosis (TB) pathogenesis in both macrophage and murine infection models.