1. Neuroscience
Download icon

Selective Rab11 transport and the intrinsic regenerative ability of CNS axons

  1. Hiroaki Koseki
  2. Matteo Donegá
  3. Brian YH Lam
  4. Veselina Petrova
  5. Susan van Erp
  6. Giles SH Yeo
  7. Jessica CF Kwok
  8. Charles ffrench-Constant
  9. RIchard Eva  Is a corresponding author
  10. James Fawcett  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of Edinburgh, United Kingdom
  3. University of Leeds, United Kingdom
Research Article
  • Cited 32
  • Views 2,780
  • Annotations
Cite this article as: eLife 2017;6:e26956 doi: 10.7554/eLife.26956

Abstract

Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity Rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons. Their transport changed from bidirectional to retrograde. However, on overexpression Rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.

Article and author information

Author details

  1. Hiroaki Koseki

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Matteo Donegá

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian YH Lam

    Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Veselina Petrova

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan van Erp

    MRC Centre of Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0883-2795
  6. Giles SH Yeo

    Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jessica CF Kwok

    School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Charles ffrench-Constant

    MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. RIchard Eva

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    re263@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  10. James Fawcett

    John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    jf108@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7990-4568

Funding

Medical Research Council (G1000864)

  • James Fawcett

Christopher and Dana Reeve Foundation (International Consortium)

  • James Fawcett

European Research Council (ECMneuro)

  • James Fawcett

GlaxoSmithKline International Scholarship

  • Hiroaki Koseki

Honjo International Scholarship Foundation

  • Hiroaki Koseki

Bristol Myers Squibb Graduate Studentship

  • Hiroaki Koseki

National Institute of Health Research (Cambridge Biomedical Research Centre)

  • James Fawcett

Czech ministry of education (CZ.02.1.01/0.0./0.0/15_003/0000419)

  • Jessica CF Kwok
  • James Fawcett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: March 18, 2017
  2. Accepted: August 7, 2017
  3. Accepted Manuscript published: August 8, 2017 (version 1)
  4. Accepted Manuscript updated: August 10, 2017 (version 2)
  5. Accepted Manuscript updated: August 30, 2017 (version 3)
  6. Version of Record published: September 22, 2017 (version 4)

Copyright

© 2017, Koseki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,780
    Page views
  • 525
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Neuroscience
    Ekemini AU Riley, Randy Schekman
    Feature Article

    The Aligning Science Across Parkinson’s (ASAP) initiative was set up to improve understanding of the biology underlying the onset and progression of Parkinson’s disease. With an emphasis on open science and collaboration, we have assembled a research network led by nearly 100 investigators to explore the pathology of Parkinson’s disease, and this network will soon expand to include researchers working on relevant (dys)-functional neural circuits. We have also contributed to large-scale genetics and patient cohort initiatives related to the disease. We hope that these actions, and others planned for the future, will deepen our knowledge of the molecular mechanisms underlying the origin and evolution of Parkinson’s disease and, ultimately, contribute to the development of novel therapies.

    1. Neuroscience
    Toshihide W Yoshioka et al.
    Research Article

    The division of labor between the dorsal and ventral visual pathways has been well studied, but not often with direct comparison at the single-neuron resolution with matched stimuli. Here we directly compared how single neurons in MT and V4, mid-tier areas of the two pathways, process binocular disparity, a powerful cue for 3D perception and actions. We found that MT neurons transmitted disparity signals more quickly and robustly, whereas V4 or its upstream neurons transformed the signals into sophisticated representations more prominently. Therefore, signaling speed and robustness were traded for transformation between the dorsal and ventral pathways. The key factor in this tradeoff was disparity-tuning shape: V4 neurons had more even-symmetric tuning than MT neurons. Moreover, the tuning symmetry predicted the degree of signal transformation across neurons similarly within each area, implying a general role of tuning symmetry in the stereoscopic processing by the two pathways.