Acidic C-terminal domains autoregulate the RNA chaperone Hfq

  1. Andrew Santiago-Frangos
  2. Jeliazko R Jeliazkov
  3. Jeffrey J Gray
  4. Sarah A Woodson  Is a corresponding author
  1. Johns Hopkins University, United States

Abstract

The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.

Article and author information

Author details

  1. Andrew Santiago-Frangos

    Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9615-065X
  2. Jeliazko R Jeliazkov

    Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4249-1955
  3. Jeffrey J Gray

    Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6380-2324
  4. Sarah A Woodson

    T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
    For correspondence
    swoodson@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0170-1987

Funding

National Institute of General Medical Sciences (R01 GM120425-01)

  • Sarah A Woodson

National Institute of General Medical Sciences (R01 GM078221)

  • Jeffrey J Gray

National Institute of General Medical Sciences (T32 GM008403-25)

  • Jeliazko R Jeliazkov

National Institute of General Medical Sciences (T32 GM007231-40)

  • Andrew Santiago-Frangos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben F Luisi, University of Cambridge, United Kingdom

Publication history

  1. Received: March 22, 2017
  2. Accepted: August 3, 2017
  3. Accepted Manuscript published: August 9, 2017 (version 1)
  4. Version of Record published: September 20, 2017 (version 2)
  5. Version of Record updated: October 12, 2017 (version 3)

Copyright

© 2017, Santiago-Frangos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,166
    Page views
  • 520
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Santiago-Frangos
  2. Jeliazko R Jeliazkov
  3. Jeffrey J Gray
  4. Sarah A Woodson
(2017)
Acidic C-terminal domains autoregulate the RNA chaperone Hfq
eLife 6:e27049.
https://doi.org/10.7554/eLife.27049

Further reading

    1. Physics of Living Systems
    2. Structural Biology and Molecular Biophysics
    Enrico F Semeraro et al.
    Research Article Updated

    We report the real-time response of Escherichia coli to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s—much faster than previously considered. Final intracellular AMP concentrations of ∼80–100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yitong Li et al.
    Research Article

    Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryo-EM structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multi-partite contacts at structured cores to activate the methylesterase. B56-interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56-interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.