RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit

Abstract

Numerous links exist between co-transcriptional RNA processing and the transcribing RNAPII. In particular, pre-mRNA splicing was reported to be associated with slowed RNAPII elongation. Here we identify a site of ubiquitination (K1246) in the catalytic subunit of RNAPII close to the DNA entry path. Ubiquitination was increased in the absence of the Bre5-Ubp3 ubiquitin protease complex. Bre5 binds RNA in vivo, with a preference for exon 2 regions of intron-containing pre-mRNAs and poly(A) proximal sites. Ubiquitinated RNAPII showed similar enrichment. The absence of Bre5 led to impaired splicing and defects in RNAPII elongation in vivo on a splicing reporter construct. Strains expressing RNAPII with a K1246R mutation showed reduced cotranscriptional splicing. We propose that ubiquinitation of RNAPII is induced by RNA processing events and linked to transcriptional pausing, which is released by Bre5-Ubp3 associated with the nascent transcript.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Laura Milligan

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Camille Sayou

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8226-7272
  3. Alex Tuck

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    For correspondence
    alex.tuck@fmi.ch
    Competing interests
    The authors declare that no competing interests exist.
  4. Tatsiana Auchynnikava

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jane E A Reid

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ross Alexander

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Flavia de Lima Alves

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Robin Allshire

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Christos Spanos

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Juri Rappsilber

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Jean D Beggs

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Grzegorz Kudla

    MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. David Tollervey

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    d.tollervey@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2894-2772

Funding

Wellcome (77248)

  • David Tollervey

Medical Research Council

  • Grzegorz Kudla

Wellcome (104648)

  • Jean D Beggs

Wellcome (108504)

  • Juri Rappsilber

Wellcome (93853)

  • Jane E A Reid

Wellcome (97383)

  • Grzegorz Kudla

Wellcome (92076)

  • David Tollervey

Wellcome (200885)

  • Robin Allshire

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Milligan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,029
    views
  • 623
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Milligan
  2. Camille Sayou
  3. Alex Tuck
  4. Tatsiana Auchynnikava
  5. Jane E A Reid
  6. Ross Alexander
  7. Flavia de Lima Alves
  8. Robin Allshire
  9. Christos Spanos
  10. Juri Rappsilber
  11. Jean D Beggs
  12. Grzegorz Kudla
  13. David Tollervey
(2017)
RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit
eLife 6:e27082.
https://doi.org/10.7554/eLife.27082

Share this article

https://doi.org/10.7554/eLife.27082

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.