Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer

Abstract

Targeting the activation function-1 (AF-1) domain located in the N-terminus of the androgen receptor (AR) is an attractive therapeutic alternative to the current approaches to inhibit AR action in prostate cancer (PCa). Here we show that the AR AF-1 is bound by the cochaperone Bag-1L. Mutations in the AR interaction domain or loss of Bag-1L abrogate AR signaling and reduce PCa growth. Clinically, Bag-1L protein levels increase with progression to castration-resistant PCa (CRPC) and high levels of Bag-1L in primary PCa associate with a reduced clinical benefit from abiraterone when these tumors progress. Intriguingly, residues in Bag-1L important for its interaction with the AR AF-1 are within a potentially druggable pocket, implicating Bag-1L as a potential therapeutic target in PCa.

Data availability

The following data sets were generated
    1. Cato L
    (2017) Targeting the androgen receptor N-terminus via the cochaperone Bag-1L
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE89939).

Article and author information

Author details

  1. Laura Cato

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7072-4368
  2. Antje Neeb

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam Sharp

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor Buzón

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Scott B Ficarro

    Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Linxiao Yang

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Claudia Muhle-Goll

    Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nane C Kuznik

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Ruth Riisnaes

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Nava Rodrigues

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Olivier Armant

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Victor Gourain

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Guillaume Adelmant

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Emmanuel A Ntim

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Thomas Westerling

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. David Dolling

    Clinical Trials and Statistics Unit, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Pasquale Rescigno

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Ines Figueiredo

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Friedrich Fauser

    Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  20. Jennifer Wu

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Jaice T Rottenberg

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Liubov Shatkina

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  23. Claudia Ester

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  24. Burkhard Luy

    Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  25. Holger Puchta

    Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  26. Jakob Troppmair

    Daniel-Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  27. Nicole Jung

    Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  28. Stefan Bräse

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  29. Uwe Strähle

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  30. Jarrod A Marto

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  31. Gerd Ulrich Nienhaus

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5027-3192
  32. Bissan Al-Lazikani

    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  33. Xavier Salvatella

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8371-4185
  34. Johann S de Bono

    Prostate Cancer Target Therapy Group, Institute of Cancer Research, Sutton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  35. Andrew CB Cato

    Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    For correspondence
    andrew.cato@kit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8508-3834
  36. Myles Brown

    Department of Medical Oncology, Dana-Farber Cancer Instittue, Boston, United States
    For correspondence
    myles_brown@dfci.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8213-1658

Funding

Prostate Cancer Foundation

  • Laura Cato
  • Adam Sharp
  • Johann S de Bono
  • Andrew CB Cato
  • Myles Brown

Deutsche Krebshilfe

  • Andrew CB Cato

Barr Foundation

  • Laura Cato

Prostate Cancer UK

  • Adam Sharp

Medical Research Council

  • Adam Sharp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Cato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Cato
  2. Antje Neeb
  3. Adam Sharp
  4. Victor Buzón
  5. Scott B Ficarro
  6. Linxiao Yang
  7. Claudia Muhle-Goll
  8. Nane C Kuznik
  9. Ruth Riisnaes
  10. Daniel Nava Rodrigues
  11. Olivier Armant
  12. Victor Gourain
  13. Guillaume Adelmant
  14. Emmanuel A Ntim
  15. Thomas Westerling
  16. David Dolling
  17. Pasquale Rescigno
  18. Ines Figueiredo
  19. Friedrich Fauser
  20. Jennifer Wu
  21. Jaice T Rottenberg
  22. Liubov Shatkina
  23. Claudia Ester
  24. Burkhard Luy
  25. Holger Puchta
  26. Jakob Troppmair
  27. Nicole Jung
  28. Stefan Bräse
  29. Uwe Strähle
  30. Jarrod A Marto
  31. Gerd Ulrich Nienhaus
  32. Bissan Al-Lazikani
  33. Xavier Salvatella
  34. Johann S de Bono
  35. Andrew CB Cato
  36. Myles Brown
(2017)
Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer
eLife 6:e27159.
https://doi.org/10.7554/eLife.27159

Share this article

https://doi.org/10.7554/eLife.27159

Further reading

    1. Cancer Biology
    Weijie Wu, Miao Yu ... Hongquan Zhang
    Research Article

    Approximately 40% ERα-positive breast cancer patients suffer from therapeutic resistance to tamoxifen. Although reduced ERα level is the major cause of tamoxifen resistance, the underlying mechanisms remain elusive. Here, we report that FRMD8 raises the level of ERα at both transcriptional and post-translational layers. FRMD8 deficiency in MMTV-Cre+; Frmd8fl/fl; PyMT mice accelerates mammary tumor growth and loss of luminal phenotype, and confers tamoxifen resistance. Single-cell RNA profiling reveals that Frmd8 loss decreases the proportion of hormone-sensing differentiated epithelial cells and downregulates the levels of ERα. Mechanically, on one hand, loss of FRMD8 inhibits ESR1 transcription via suppressing the expression of FOXO3A, a transcription factor of ESR1. On the other hand, FRMD8 interacts both with ERα and UBE3A, and disrupts the interaction of UBE3A with ERα, thereby blocking UBE3A-mediated ERα degradation. In breast cancer patients, FRMD8 gene promoter is found hypermethylated and low level of FRMD8 predicts poor prognosis. Therefore, FRMD8 is an important regulator of ERα and may control therapeutic sensitivity to tamoxifen in ERα-positive breast cancer patients.

    1. Cancer Biology
    2. Physics of Living Systems
    Joseph Ackermann, Chiara Bernard ... Martine D Ben Amar
    Research Article

    The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.