Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula

  1. Jason Wen Hui Wen
  2. Rudolf Winklbauer  Is a corresponding author
  1. University of Toronto, Canada

Abstract

During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration.

Article and author information

Author details

  1. Jason Wen Hui Wen

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7402-5073
  2. Rudolf Winklbauer

    Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
    For correspondence
    r.winklbauer@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0628-0897

Funding

Canadian Institutes of Health Research (MOP-53075)

  • Rudolf Winklbauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Research animals were used in accordance with guidelines approved by the University Animal Care Committee (Protocol no. 20011765, University of Toronto, Canada).

Copyright

© 2017, Wen & Winklbauer

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,881
    views
  • 328
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason Wen Hui Wen
  2. Rudolf Winklbauer
(2017)
Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula
eLife 6:e27190.
https://doi.org/10.7554/eLife.27190

Share this article

https://doi.org/10.7554/eLife.27190