Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies
Abstract
The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2Å resolution) and PG9 (11.5Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility.
Data availability
-
BG1-Env-8ANC195 complexPublicly available at the EMBL_EBI Protein Dtat Bank in Europe (accession no: EMD-8693).
-
PG9-Env-8ANC195 complexPublicly available at the EMBL_EBI Protein Dtat Bank in Europe (accession no: EMDB-8695).
-
BG1 Fab coordinatePublicly available at the RCSB Protein Data Bank (accession no: 5VVF).
-
BG1-Env-8ANC195 complex coordinatesPublicly available at the RCSB Protein Data Bank (accession no: 5VIY).
-
PG9-Env-8ANC195 complex coordinatesPublicly available at the RCSB Protein Data Bank (accession no: 5VJ6).
Article and author information
Author details
Funding
National Institutes of Health (GM082545-06)
- Pamela J Bjorkman
National Institute of Allergy and Infectious Diseases (HIVRAD P01 AI100148)
- Michel C Nussenzweig
- Pamela J Bjorkman
Bill and Melinda Gates Foundation (1040753)
- Michel C Nussenzweig
- Pamela J Bjorkman
Comprehensive Antibody-Vaccine Immune Monitoring Consortium (1032144)
- Michael S Seaman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Arup K. Chakraborty, Massachusetts Institute of Technology, United States
Publication history
- Received: April 1, 2017
- Accepted: May 24, 2017
- Accepted Manuscript published: May 26, 2017 (version 1)
- Version of Record published: June 15, 2017 (version 2)
Copyright
© 2017, Wang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,971
- Page views
-
- 426
- Downloads
-
- 35
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Structural Biology and Molecular Biophysics
Formation of membraneless organelles or biological condensates via phase separation and related processes hugely expands the cellular organelle repertoire. Biological condensates are dense and viscoelastic soft matters instead of canonical dilute solutions. To date, numerous different biological condensates have been discovered; but mechanistic understanding of biological condensates remains scarce. In this study, we developed an adaptive single molecule imaging method that allows simultaneous tracking of individual molecules and their motion trajectories in both condensed and dilute phases of various biological condensates. The method enables quantitative measurements of concentrations, phase boundary, motion behavior and speed of molecules in both condensed and dilute phases as well as the scale and speed of molecular exchanges between the two phases. Notably, molecules in the condensed phase do not undergo uniform Brownian motion, but instead constantly switch between a (class of) confined state(s) and a random diffusion-like motion state. Transient confinement is consistent with strong interactions associated with large molecular networks (i.e., percolation) in the condensed phase. In this way, molecules in biological condensates behave distinctly different from those in dilute solutions. The methods and findings described herein should be generally applicable for deciphering the molecular mechanisms underlying the assembly, dynamics and consequently functional implications of biological condensates.
-
- Structural Biology and Molecular Biophysics
Single-molecule tweezers, such as magnetic tweezers, are powerful tools for probing nm-scale structural changes in single membrane proteins under force. However, the weak molecular tethers used for the membrane protein studies have limited the observation of long-time, repetitive molecular transitions due to force-induced bond breakage. The prolonged observation of numerous transitions is critical in reliable characterizations of structural states, kinetics, and energy barrier properties. Here, we present a robust single-molecule tweezer method that uses dibenzocyclooctyne (DBCO) cycloaddition and traptavidin binding, enabling the estimation of the folding 'speed limit' of helical membrane proteins. This method is >100 times more stable than a conventional linkage system regarding the lifetime, allowing for the survival for ~12 h at 50 pN and ~1000 pulling cycle experiments. By using this method, we were able to observe numerous structural transitions of a designer single-chained transmembrane (TM) homodimer for 9 h at 12 pN, and reveal its folding pathway including the hidden dynamics of helix-coil transitions. We characterized the energy barrier heights and folding times for the transitions using a model-independent deconvolution method and the hidden Markov modeling (HMM) analysis, respectively. The Kramers rate framework yields a considerably low speed limit of 21 ms for a helical hairpin formation in lipid bilayers, compared to μs scale for soluble protein folding. This large discrepancy is likely due to the highly viscous nature of lipid membranes, retarding the helix-helix interactions. Our results offer a more valid guideline for relating the kinetics and free energies of membrane protein folding.