Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies

  1. Haoqing Wang
  2. Harry B Gristick
  3. Louise Scharf
  4. Anthony P West
  5. Rachel P Galimidi
  6. Michael S Seaman
  7. Natalia T Freund
  8. Michel C Nussenzweig
  9. Pamela J Bjorkman  Is a corresponding author
  1. California Institute of Technology, United States
  2. 23andMe, United States
  3. Beth Israel Deaconess Medical Center, United States
  4. Tel Aviv University, Israel
  5. The Rockefeller University, United States

Abstract

The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2Å resolution) and PG9 (11.5Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility.

Data availability

The following data sets were generated
    1. Haoqing Wang
    2. Harry Gristick
    3. Pamela Bjorkman
    (2017) BG1-Env-8ANC195 complex
    Publicly available at the EMBL_EBI Protein Dtat Bank in Europe (accession no: EMD-8693).
    1. Haoqing Wang
    2. Harry Gristick
    3. Pamela Bjorkm
    (2017) PG9-Env-8ANC195 complex
    Publicly available at the EMBL_EBI Protein Dtat Bank in Europe (accession no: EMDB-8695).
    1. Louise Scharf
    2. Harry Gristick
    3. Pamela Bjorkman
    (2017) BG1 Fab coordinate
    Publicly available at the RCSB Protein Data Bank (accession no: 5VVF).

Article and author information

Author details

  1. Haoqing Wang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  2. Harry B Gristick

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Louise Scharf

    Therapeutics, 23andMe, Mountain View, United States
    Competing interests
    No competing interests declared.
  4. Anthony P West

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  5. Rachel P Galimidi

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Michael S Seaman

    Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  7. Natalia T Freund

    Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    No competing interests declared.
  8. Michel C Nussenzweig

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    Michel C Nussenzweig, Senior editor, eLife.
  9. Pamela J Bjorkman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    bjorkman@caltech.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2277-3990

Funding

National Institutes of Health (GM082545-06)

  • Pamela J Bjorkman

National Institute of Allergy and Infectious Diseases (HIVRAD P01 AI100148)

  • Michel C Nussenzweig
  • Pamela J Bjorkman

Bill and Melinda Gates Foundation (1040753)

  • Michel C Nussenzweig
  • Pamela J Bjorkman

Comprehensive Antibody-Vaccine Immune Monitoring Consortium (1032144)

  • Michael S Seaman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haoqing Wang
  2. Harry B Gristick
  3. Louise Scharf
  4. Anthony P West
  5. Rachel P Galimidi
  6. Michael S Seaman
  7. Natalia T Freund
  8. Michel C Nussenzweig
  9. Pamela J Bjorkman
(2017)
Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies
eLife 6:e27389.
https://doi.org/10.7554/eLife.27389

Share this article

https://doi.org/10.7554/eLife.27389

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.