Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP
Abstract
We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, leading to accumulation of the A complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including 6 proteins that are components of the U2 snRNP and required for A complex formation.
Data availability
-
Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENPPublicly available at PRIDE (accession no. PXD007629).
Article and author information
Author details
Funding
Wellcome (073980/Z/03/B)
- Angus I Lamond
Wellcome (097045/B/11/Z)
- Angus I Lamond
Wellcome (098391/Z/12/7)
- Ronald T Hay
Wellcome (105606/Z/14/Z)
- Ronald T Hay
European Commission (PITN-GA-2011-290257)
- Triin Tammsalu
Engineering and Physical Sciences Research Council (EP/L50497X/1)
- Lewis J King
Engineering and Physical Sciences Research Council (EP/L50497X/1)
- Helmi Kreinin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Juan Valcárcel, Centre de Regulació Genòmica (CRG), Barcelona, Spain
Version history
- Received: April 2, 2017
- Accepted: September 6, 2017
- Accepted Manuscript published: September 8, 2017 (version 1)
- Version of Record published: September 28, 2017 (version 2)
Copyright
© 2017, Pawellek et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,446
- Page views
-
- 402
- Downloads
-
- 26
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Cell Biology
Pancreatic a-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human a-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality a-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live a-cells from dissociated human islet cells with ~ 95% purity. The a-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form a-pseudoislets. The a-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key a-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in a-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary a-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.
-
- Biochemistry and Chemical Biology
- Cell Biology
Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.