1. Biochemistry
Download icon

Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP

  1. Andrea Pawellek
  2. Ursula Ryder
  3. Triin Tammsalu
  4. Lewis J King
  5. Helmi Kreinin
  6. Tony Ly
  7. Ronald T Hay
  8. Richard Hartley
  9. Angus I Lamond Is a corresponding author
  1. University of Dundee, United Kingdom
  2. WestCHEM School of Chemistry, University of Glasgow, United Kingdom
Research Article
Cited
0
Views
257
Comments
0
Cite as: eLife 2017;6:e27402 doi: 10.7554/eLife.27402

Abstract

We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, leading to accumulation of the A complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including 6 proteins that are components of the U2 snRNP and required for A complex formation.

Article and author information

Author details

  1. Andrea Pawellek

    Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ursula Ryder

    Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Triin Tammsalu

    Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lewis J King

    WestCHEM School of Chemistry, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Helmi Kreinin

    WestCHEM School of Chemistry, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tony Ly

    Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ronald T Hay

    Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard Hartley

    WestCHEM School of Chemistry, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Angus I Lamond

    Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    a.i.lamond@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0001-6204-6045

Funding

Wellcome (073980/Z/03/B)

  • Angus I Lamond

Wellcome (097045/B/11/Z)

  • Angus I Lamond

Wellcome (098391/Z/12/7)

  • Ronald T Hay

Wellcome (105606/Z/14/Z)

  • Ronald T Hay

European Commission (PITN-GA-2011-290257)

  • Triin Tammsalu

Engineering and Physical Sciences Research Council (EP/L50497X/1)

  • Lewis J King

Engineering and Physical Sciences Research Council (EP/L50497X/1)

  • Helmi Kreinin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Juan Valcárcel, Reviewing Editor, Centre de Regulació Genòmica (CRG), Barcelona, Spain

Publication history

  1. Received: April 2, 2017
  2. Accepted: September 6, 2017
  3. Accepted Manuscript published: September 8, 2017 (version 1)

Copyright

© 2017, Pawellek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 257
    Page views
  • 83
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Comments

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Genes and Chromosomes
    Wahid A Mulla et al.
    Research Article Updated