Structural mechanism of ATP-independent transcription initiation by RNA polymerase I

  1. Yan Han
  2. Chunli Yan
  3. Thi Hoang Duong Nguyen
  4. Ashleigh J Jackobel
  5. Ivaylo Ivanov
  6. Bruce A Knutson  Is a corresponding author
  7. Yuan He  Is a corresponding author
  1. Northwestern University, United States
  2. Georgia State University, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. SUNY Upstate Medical University, United States
  5. Northwestern Unviersity, United States

Abstract

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.

Article and author information

Author details

  1. Yan Han

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1207-7756
  2. Chunli Yan

    Department of Chemistry, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thi Hoang Duong Nguyen

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ashleigh J Jackobel

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivaylo Ivanov

    Department of Chemistry, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruce A Knutson

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    For correspondence
    knutsonb@upstate.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuan He

    Department of Molecular Biosciences, Northwestern Unviersity, Evanston, United States
    For correspondence
    yuanhe@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1455-3963

Funding

Northwestern University (Cornew Innovation Award)

  • Yuan He

Alexandrine and Alexander L. Sinsheimer Fund (Sinsheimer Scholar award)

  • Bruce A Knutson

Chicago Community Trust (Catalyst Award)

  • Yuan He

American Cancer Society (Institutional Research Grant IRG-15-173-21)

  • Yuan He

SUNY Research Foundation

  • Bruce A Knutson

Central New York Community Foundation

  • Bruce A Knutson

National Cancer Institute (5K22CA184235)

  • Bruce A Knutson

National Institute of General Medical Sciences (GM110387)

  • Ivaylo Ivanov

National Science Foundation (MCB-1149521)

  • Ivaylo Ivanov

Chicago Community Trust (Chicago Biomedical Consortium Postdoctoral Research Grant)

  • Yan Han

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Cynthia Wolberger, Johns Hopkins University, United States

Version history

  1. Received: April 3, 2017
  2. Accepted: June 17, 2017
  3. Accepted Manuscript published: June 17, 2017 (version 1)
  4. Version of Record published: June 28, 2017 (version 2)

Copyright

© 2017, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,477
    views
  • 531
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yan Han
  2. Chunli Yan
  3. Thi Hoang Duong Nguyen
  4. Ashleigh J Jackobel
  5. Ivaylo Ivanov
  6. Bruce A Knutson
  7. Yuan He
(2017)
Structural mechanism of ATP-independent transcription initiation by RNA polymerase I
eLife 6:e27414.
https://doi.org/10.7554/eLife.27414

Share this article

https://doi.org/10.7554/eLife.27414

Further reading

    1. Structural Biology and Molecular Biophysics
    Simon M Lichtinger, Joanne L Parker ... Philip C Biggin
    Research Article

    Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2. Nevertheless, these studies leave open important questions regarding the mechanism of proton and substrate coupling, while simultaneously providing a unique opportunity to investigate these processes using molecular dynamics (MD) simulations. Here, we employ extensive unbiased and enhanced-sampling MD to map out the full SLC15A2 conformational cycle and its thermodynamic driving forces. By computing conformational free energy landscapes in different protonation states and in the absence or presence of peptide substrate, we identify a likely sequence of intermediate protonation steps that drive inward-directed alternating access. These simulations identify key differences in the extracellular gate between mammalian and bacterial POTs, which we validate experimentally in cell-based transport assays. Our results from constant-PH MD and absolute binding free energy (ABFE) calculations also establish a mechanistic link between proton binding and peptide recognition, revealing key details underpining secondary active transport in POTs. This study provides a vital step forward in understanding proton-coupled peptide and drug transport in mammals and pave the way to integrate knowledge of solute carrier structural biology with enhanced drug design to target tissue and organ bioavailability.

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.